Publications by authors named "Mickael Menager"

Bone regeneration is mediated by skeletal stem/progenitor cells (SSPCs) that are mainly recruited from the periosteum after bone injury. The composition of the periosteum and the steps of SSPC activation and differentiation remain poorly understood. Here, we generated a single-nucleus atlas of the periosteum at steady state and of the fracture site during the early stages of bone repair (https://fracture-repair-atlas.

View Article and Find Full Text PDF

Primary antiphospholipid syndrome (PAPS) is a life-threatening clotting disorder mediated by pathogenic autoantibodies. Here we dissect the origin of self-reactive B cells in human PAPS using peripheral blood and bone marrow of patients with triple-positive PAPS via combined single-cell RNA sequencing, B cell receptors (BCR) repertoire profiling, CITEseq analysis and single cell immortalization. We find that antiphospholipid (aPL)-specific B cells are present in the naive compartment, polyreactive, and derived from the natural repertoire.

View Article and Find Full Text PDF
Article Synopsis
  • The human immune system continues to develop for several years after birth, affecting how young children respond to infections, such as SARS-CoV-2.
  • Researchers studied T cell responses in children and adults before, during, and after SARS-CoV-2 infection, revealing that younger children (under 5) had a weaker CD4 T cell response compared to older children and adults with mild disease.
  • Following infection, preschool-age children produced similar neutralizing antibodies to adults but had different T cell characteristics and fewer memory B cells, indicating a gradual maturation of their adaptive immune responses.
View Article and Find Full Text PDF

Bone regeneration is mediated by skeletal stem/progenitor cells (SSPCs) that are mainly recruited from the periosteum after bone injury. The composition of the periosteum and the steps of SSPC activation and differentiation remain poorly understood. Here, we generated a single-nuclei atlas of the periosteum at steady-state and of the fracture site during early stages of bone repair ( https://fracture-repair-atlas.

View Article and Find Full Text PDF
Article Synopsis
  • Congenital pseudarthrosis of the tibia (CPT) is characterized by non-healing bone fractures, often linked to neurofibromatosis type 1 (NF1), a genetic disorder caused by mutations in a tumor suppressor gene.
  • Research focused on the role of specific cell types, including Schwann cells and skeletal stem/progenitor cells (SSPCs), in the development of fibrosis associated with CPT.
  • Treatment using inhibitors targeting the RAS-MAPK signaling pathway showed promise in preventing fibrous nonunion in a mouse model, suggesting a new potential strategy for dealing with CPT-related complications.
View Article and Find Full Text PDF

Proliferative glomerulonephritis is a severe condition that often leads to kidney failure. There is a significant lack of effective treatment for these disorders. Here, following the identification of a somatic PIK3CA gain-of-function mutation in podocytes of a patient, we demonstrate using multiple genetically engineered mouse models, single-cell RNA sequencing, and spatial transcriptomics the crucial role played by this pathway for proliferative glomerulonephritis development by promoting podocyte proliferation, dedifferentiation, and inflammation.

View Article and Find Full Text PDF
Article Synopsis
  • Recent findings show that mutations in the UBA1 gene are linked to VEXAS syndrome, an adult-onset auto-inflammatory condition, but the exact effects of these mutations are not well understood.
  • Research on a group of VEXAS patients indicates that their monocytes are not functioning properly and exhibit signs of exhaustion and altered chemokine receptor expression.
  • The study also highlights elevated levels of inflammatory cytokines in the blood of VEXAS patients, pointing to possible therapeutic targets related to inflammasome activation and inflammatory cell death.
View Article and Find Full Text PDF

Gain-of-function mutations in the gene result in activated phosphoinositide 3-kinase δ syndrome type 1 (APDS1). This syndrome is a life-threatening combined immunodeficiency and today there are neither optimal nor long-term therapeutic solutions for APDS1 patients. Thus, new alternative treatments are highly needed.

View Article and Find Full Text PDF

Gain-of-function mutations in stimulator of interferon gene 1 (STING1) result in STING-associated vasculopathy with onset in infancy (SAVI), a severe autoinflammatory disease. Although elevated type I interferon (IFN) production is thought to be the leading cause of the symptoms observed in patients, STING can induce a set of pathways, which have roles in the onset and severity of SAVI and remain to be elucidated. To this end, we performed a multi-omics comparative analysis of peripheral blood mononuclear cells (PBMCs) and plasma from SAVI patients and healthy controls, combined with a dataset of healthy PBMCs treated with IFN-β.

View Article and Find Full Text PDF

Benign prostate hyperplasia (BPH) is caused by the nonmalignant enlargement of the transition zone of the prostate gland, leading to lower urinary tract symptoms. Although current medical treatments are unsatisfactory in many patients, the limited understanding of the mechanisms driving disease progression prevents the development of alternative therapeutic strategies. The probasin-prolactin (Pb-PRL) transgenic mouse recapitulates many histopathological features of human BPH.

View Article and Find Full Text PDF

Humans display substantial interindividual clinical variability after SARS-CoV-2 infection, the genetic and immunological basis of which has begun to be deciphered. However, the extent and drivers of population differences in immune responses to SARS-CoV-2 remain unclear. Here we report single-cell RNA-sequencing data for peripheral blood mononuclear cells-from 222 healthy donors of diverse ancestries-that were stimulated with SARS-CoV-2 or influenza A virus.

View Article and Find Full Text PDF

Loss of NBEAL2 function leads to grey platelet syndrome (GPS), a bleeding disorder characterized by macro-thrombocytopenia and α-granule-deficient platelets. A proportion of patients with GPS develop autoimmunity through an unknown mechanism, which might be related to the proteins NBEAL2 interacts with, specifically in immune cells. Here we show a comprehensive interactome of NBEAL2 in primary T cells, based on mass spectrometry identification of altogether 74 protein association partners.

View Article and Find Full Text PDF

Dedicator of cytokinesis (DOCK) proteins play a central role in actin cytoskeleton regulation. This is highlighted by the DOCK2 and DOCK8 deficiencies leading to actinopathies and immune deficiencies. DOCK8 and DOCK11 activate CDC42, a Rho-guanosine triphosphate hydrolases involved in actin cytoskeleton dynamics, among many cellular functions.

View Article and Find Full Text PDF

Sustained response off treatment (SROT) after thrombopoietin receptor agonist (TPO-RA) discontinuation has been reported in immune thrombocytopenia (ITP). This prospective multicenter interventional study enrolled adults with persistent or chronic primary ITP and complete response (CR) on TPO-RAs. The primary end point was the proportion of patients achieving SROT (platelet count >30 × 109/L and no bleeding) at week 24 (W24) with no other ITP-specific medications.

View Article and Find Full Text PDF

Autoimmune disorders have been well characterized over the years and many pathways-but not all of them-have been found to explain their pathophysiology. Autoinflammatory disorders, on the other hand, are still hiding most of their molecular and cellular mechanisms. During the past few years, a newcomer has challenged the idea that only adaptive immunity could display memory response.

View Article and Find Full Text PDF
Article Synopsis
  • Allogenic hematopoietic stem cell transplantation (HSCT) and gene therapy (GT) are potential cures for severe combined immunodeficiency (SCID), but patients often face late-onset issues like persistent hepatitis.
  • A study of SCID patients revealed that 11 out of 44 experienced persistent hepatitis linked to chronic enteric viral infections, particularly enteric viruses not found in non-hepatitis SCID patients.
  • Treatments like retransplantation or gene therapy showed promise, as 5 patients achieved remission of hepatitis and viral clearance, highlighting the importance of addressing immune dysregulation in these patients.
View Article and Find Full Text PDF

Background: Increasing evidence suggest that microRNAs are involved in the physiopathology of acute or chronic renal disease. In kidney transplantation, as key regulators of cellular homeostasis, microRNAs may be involved in the regulation of immune cell function and the allograft response. Here, we investigated the change in circulating microRNA expression profile and their involvement in the profound transcriptional changes associated with antibody-mediated rejection (AMR).

View Article and Find Full Text PDF

Primary Immunodeficiencies (PIDs) are associated with more than 400 rare monogenic diseases affecting various biological functions (e.g., development, regulation of the immune response) with a heterogeneous clinical expression (from no symptom to severe manifestations).

View Article and Find Full Text PDF

Bone regeneration involves skeletal stem/progenitor cells (SSPCs) recruited from bone marrow, periosteum, and adjacent skeletal muscle. To achieve bone reconstitution after injury, a coordinated cellular and molecular response is required from these cell populations. Here, we show that SSPCs from periosteum and skeletal muscle are enriched in osteochondral progenitors, and more efficiently contribute to endochondral ossification during fracture repair as compared to bone-marrow stromal cells.

View Article and Find Full Text PDF

CD4 FOXP3 Tregs are currently explored to develop cell therapies against immune-mediated disorders, with an increasing focus on antigen receptor-engineered Tregs. Deciphering their mode of action is necessary to identify the strengths and limits of this approach. Here, we addressed this issue in an autoimmune disease of the CNS, EAE.

View Article and Find Full Text PDF

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children is generally milder than in adults, but a proportion of cases result in hyperinflammatory conditions often including myocarditis.

Methods: To better understand these cases, we applied a multiparametric approach to the study of blood cells of 56 children hospitalized with suspicion of SARS-CoV-2 infection. Plasma cytokine and chemokine levels and blood cellular composition were measured, alongside gene expression at the bulk and single-cell levels.

View Article and Find Full Text PDF

Bone regenerates by activation of tissue resident stem/progenitor cells, formation of a fibrous callus followed by deposition of cartilage and bone matrices. Here, we show that mesenchymal progenitors residing in skeletal muscle adjacent to bone mediate the initial fibrotic response to bone injury and also participate in cartilage and bone formation. Combined lineage and single-cell RNA sequencing analyses reveal that skeletal muscle mesenchymal progenitors adopt a fibrogenic fate before they engage in chondrogenesis after fracture.

View Article and Find Full Text PDF

Objective: This study aims to assess the effect of a preoperative parasternal plane block (PSB) on opioid consumption required to maintain hemodynamic stability during sternotomy for coronary artery bypass graft surgery.

Methods: This double-blind, randomized, placebo-controlled trial prospectively enrolled 35 patients scheduled for coronary artery bypass graft surgery under general anesthesia with propofol and remifentanil. Patients were randomized to receive preoperative PSB using either ropivacaine (PSB group) or saline solution (placebo group) (1:1 ratio).

View Article and Find Full Text PDF
Article Synopsis
  • Memory B cells are crucial for fighting viruses, but their specific role in SARS-CoV-2 infection has been unclear until now.
  • A study tracked the B cell response in COVID-19 patients for 6 months, finding that early B cell activation led to strong antibody production and ongoing immune response.
  • The research shows that specific memory B cells evolved with somatic mutations over time, indicating a persistent immune activation that could help provide long-term protection against SARS-CoV-2.
View Article and Find Full Text PDF

Tetraspanin (TSPAN) protein family forms a family of transmembrane proteins that act as organizers/scaffold for other proteins. TSPANs are primarily present on plasma membranes although they are also found in other biological membranes. They are organized in tetraspanin-enriched microdomains (TEMs), which allow spatiotemporal tuning of protein functions through the control of their membrane localization.

View Article and Find Full Text PDF