Although refrigerated storage slows the metabolism of volunteer donor RBCs, cellular aging still occurs throughout this process, which is essential in transfusion medicine. Storage-induced microerythrocytes (SMEs) are morphologically-altered senescent RBCs that accumulate during storage and which are cleared from circulation following transfusion. However, the molecular and cellular alterations that trigger clearance of this RBC subset remain to be identified.
View Article and Find Full Text PDFIn children with sickle cell disease (SCD), splenectomy is immediately beneficial for acute sequestration crises and hypersplenism (ASSC/HyS) but portends a long-term risk of asplenia-related complications. We retrieved peripheral and splenic red blood cells (RBCs) from 17 SCD children/teenagers undergoing partial splenectomy for ASSC/HyS, 12 adult subjects without RBC-related disease undergoing splenectomy (controls), five human spleens perfused ex vivo with Hb- and Hb-RBC, and quantified abnormal RBC by microscopy, spleen-mimetic RBC filtration, and adhesion assays. Spleens were analyzed by immunohistochemistry and transmission electron microscopy (TEM).
View Article and Find Full Text PDFDrug repurposing is a valuable strategy for rare diseases. Sickle cell disease (SCD) is a rare hereditary hemolytic anemia accompanied by acute and chronic painful episodes, most often in the context of vaso-occlusive crisis (VOC). Although progress in the knowledge of pathophysiology of SCD have allowed the development of new therapeutic options, a large fraction of patients still exhibits unmet therapeutic needs, with persistence of VOCs and chronic disease progression.
View Article and Find Full Text PDFCentral retinal vein occlusion (CRVO) is a frequent retinal disorder inducing blindness due to the occlusion of the central vein of the retina. The primary cause of the occlusion remains to be identified leading to the lack of treatment. To date, current treatments mainly target the complications of the disease and do not target the primary dysfunctions.
View Article and Find Full Text PDFRefrigerated storage of red cell concentrates before transfusion is associated with progressive alterations of red blood cells (RBC). Small RBC (type III echinocytes, sphero-echinocytes, and spherocytes) defined as storage-induced micro-erythrocytes (SME) appear during pretransfusion storage. SME accumulate with variable intensity from donor to donor, are cleared rapidly after transfusion, and their proportion correlates with transfusion recovery.
View Article and Find Full Text PDFPermanent availability of red blood cells (RBCs) for transfusion depends on refrigerated storage, during which morphologically altered RBCs accumulate. Among these, a subpopulation of small RBCs, comprising type III echinocytes, spheroechinocytes, and spherocytes and defined as storage-induced microerythrocytes (SMEs), could be rapidly cleared from circulation posttransfusion. We quantified the proportion of SMEs in RBC concentrates from healthy human volunteers and assessed correlation with transfusion recovery, investigated the fate of SMEs upon perfusion through human spleen ex vivo, and explored where and how SMEs are cleared in a mouse model of blood storage and transfusion.
View Article and Find Full Text PDFBackground: Red blood cells (RBC) change upon hypothermic conservation, and storage for 6 weeks is associated with the short-term clearance of 15% to 20% of transfused RBCs. Metabolic rejuvenation applied to RBCs before transfusion replenishes energetic sources and reverses most storage-related alterations, but how it impacts RBC circulatory functions has not been fully elucidated.
Study Design And Methods: Six RBC units stored under blood bank conditions were analyzed weekly for 6 weeks and rejuvenated on Day 42 with an adenine-inosine-rich solution.
Spleen dysfunction is central to morbidity and mortality in children with sickle cell anemia (SCA). The initiation and determinants of spleen injury, including acute splenic sequestration (ASS) have not been established. We investigated splenic function longitudinally in a cohort of 57 infants with SCA enrolled at 3 to 6 months of age and followed up to 24 months of age and explored the respective contribution of decreased red blood cell (RBC) deformability and increased RBC adhesion on splenic injury, including ASS.
View Article and Find Full Text PDFPolycythemia vera is a chronic myeloproliferative neoplasm characterized by the JAK2V617F mutation, elevated blood cell counts and a high risk of thrombosis. Although the red cell lineage is primarily affected by JAK2V617F, the impact of mutated JAK2 on circulating red blood cells is poorly documented. Recently, we showed that in polycythemia vera, erythrocytes had abnormal expression of several proteins including Lu/BCAM adhesion molecule and proteins from the endoplasmic reticulum, mainly calreticulin and calnexin.
View Article and Find Full Text PDFBackground: Storage lesion may explain the rapid clearance of up to 25% of transfused red blood cells (RBCs) in recipients. Several alterations affect stored RBC but a quantitative, whole cell-based predictor of transfusion yield is lacking. Because RBCs with reduced surface area are retained by the spleen, we quantified changes in RBC dimensions during storage.
View Article and Find Full Text PDFThe accumulation of lipid droplets (LD) is frequently observed in hepatitis C virus (HCV) infection and represents an important risk factor for the development of liver steatosis and cirrhosis. The mechanisms of LD biogenesis and growth remain open questions. Here, transcriptome analysis reveals a significant upregulation of septin 9 in HCV-induced cirrhosis compared with the normal liver.
View Article and Find Full Text PDFVaso-occlusive crisis (VOC) is the main acute complication in sickle cell anaemia (SS) and several clinical trials are investigating different drugs to improve the clinical severity of SS patients. A phase III study is currently exploring the profit of Velopoloxamer in SS during VOCs. We analysed, in-vitro, the effect of poloxamer (P188) on red blood cell (RBC) properties by investigating haemorheology, mechanical and adhesion functions using ektacytometry, microfluidics and dynamic adhesion approaches, respectively.
View Article and Find Full Text PDFThe main targets of hepatitis C virus (HCV) are hepatocytes, the highly polarized cells of the liver, and all the steps of its life cycle are tightly dependent on host lipid metabolism. The interplay between polarity and lipid metabolism in HCV infection has been poorly investigated. Signaling lipids, such as phosphoinositides (PIs), play a vital role in polarity, which depends on the distribution and expression of PI kinases and PI phosphatases.
View Article and Find Full Text PDF