Use of human induced pluripotent stem cells (h-iPSCs) for bone tissue engineering is most appealing, because h-iPSCs are an inexhaustible source of osteocompetent cells. The present study investigated the contribution of undifferentiated h-iPSCs and elucidated aspects of the underlying mechanism(s) of the involvement of these cells to new bone formation. Implantation of undifferentiated h-iPSCs seeded on coral particles in ectopic sites of mice resulted in expression of osteocalcin and DMP-1, and in mineral content similar to that of the murine bone.
View Article and Find Full Text PDFA major impediment to the development of therapies with mesenchymal stem cells/multipotent stromal cells (MSC) is the poor survival and engraftment of MSCs at the site of injury. We hypothesized that lowering the energetic demand of MSCs by driving them into a quiescent state would enhance their survival under ischemic conditions. Human MSCs (hMSCs) were induced into quiescence by serum deprivation (SD) for 48 hours.
View Article and Find Full Text PDFTissue constructs containing mesenchymal stem cells (MSCs) are appealing strategies for repairing large segmental bone defects, but they do not allow consistent bone healing and early cell death was identified as a cause of failure. However, little is known about cell survival in the clinical microenvironment encountered during bone healing process. Osteoconductive coral scaffold with or without luciferase-labeled human MSCs were implanted either in a critical segmental femoral bone defect stabilized by plate or subcutaneously in 44 mice.
View Article and Find Full Text PDFUnlabelled: : Mesenchymal stem cells (MSCs) have captured the attention and research endeavors of the scientific world because of their differentiation potential. However, there is accumulating evidence suggesting that the beneficial effects of MSCs are predominantly due to the multitude of bioactive mediators secreted by these cells. Because the paracrine potential of MSCs is closely related to their microenvironment, the present study investigated and characterized select aspects of the human MSC (hMSC) secretome and assessed its in vitro and in vivo bioactivity as a function of oxygen tension, specifically near anoxia (0.
View Article and Find Full Text PDFTissue constructs containing mesenchymal stem cells (MSC) are an appealing strategy for repairing massive segmental bone defects. However, their therapeutic effectiveness does not match that of autologous bone grafts; among the complicating reasons, the scaffold resorbability has been identified as a critical feature for achieving bone regeneration. In the present study, the osteogenic potential of constructs obtained by expanding autologous MSC onto granules of Acropora coral, a natural fully-resorbable scaffold, was investigated.
View Article and Find Full Text PDFA major limitation in the development of cellular therapies using human mesenchymal stem cells (hMSCs) is cell survival post-transplantation. In this study, we challenged the current paradigm of hMSC survival, which assigned a pivotal role to oxygen, by testing the hypothesis that exogenous glucose may be key to hMSC survival. We demonstrated that hMSCs could endure sustained near-anoxia conditions only in the presence of glucose.
View Article and Find Full Text PDFMouse models are invaluable tools for mechanistic and efficacy studies of the healing process of large bone defects resulting in atrophic nonunions, a severe medical problem and a financial health-care-related burden. Models of atrophic nonunions are usually achieved by providing a highly stable biomechanical environment. For this purpose, external fixators have been investigated, but plate osteosynthesis, despite its high clinical relevance, has not yet been considered in mice.
View Article and Find Full Text PDFSkeletal unloading provokes bone loss. These bone alterations have been shown to be associated with impairment of osteoblastic activity. In the present study, we evaluated the effect of skeletal unloading on bone marrow progenitor cells, for exploration of the underlying mechanism.
View Article and Find Full Text PDFA perfusion bioreactor, which was designed based on fluidized bed concepts, was validated for the culture of bone constructs of clinically relevant size. For this study, natural coral has been used as three-dimensional scaffolds. This biomaterial is a microporous, biocompatible, osteoconductive, and absorbable scaffold.
View Article and Find Full Text PDF