Publications by authors named "Mickael Brun"

A highly birefringent polarization-maintaining chalcogenide microstructured optical fiber (MOF) covering the 3-8.5 µm wavelength range has been realized for the first time. The fiber cross-section consists of 3 rings of circular air holes with 2 larger holes adjacent to the core.

View Article and Find Full Text PDF

In this paper, we present the design, the fabrication and the characterization of an Arrayed Waveguide Grating (AWG) based on a SiGe graded index waveguide platform, operating at 4.5 µm. These devices were specifically designed to work together with an array of Distributed Feedback Bragg Quantum Cascade Lasers (DFB-QCL) emitting at different wavelengths.

View Article and Find Full Text PDF

We demonstrate the design, fabrication and characterization of a highly nonlinear graded-index SiGe waveguide for the conversion of mid-infrared signals to the near-infrared. Using phase-matched four-wave mixing, we report the conversion of a signal at 2.65 µm to 1.

View Article and Find Full Text PDF

In the last few years Mid InfraRed (MIR) photonics has received renewed interest for a variety of commercial, scientific and military applications. This paper reports the design, the fabrication and the characterization of SiGe/Si based graded index waveguides and photonics integrated devices. The thickness and the Ge concentration of the core layer were optimized to cover the full [3 - 8 µm] band.

View Article and Find Full Text PDF

The favorable downscaling behavior of photoacoustic spectroscopy has provoked in recent years a growing interest in the miniaturization of photoacoustic sensors. The individual components of the sensor, namely widely tunable quantum cascade lasers, low loss mid infrared (mid-IR) waveguides, and efficient microelectromechanical systems (MEMS) microphones are becoming available in complementary metal-oxide-semiconductor (CMOS) compatible technologies. This paves the way for the joint processes of miniaturization and full integration.

View Article and Find Full Text PDF

We present a systematic experimental study of the linear and nonlinear optical properties of silicon-germanium (SiGe) waveguides, conducted on samples of varying cross-sectional dimensions and Ge concentrations. The evolution of the various optical properties for waveguide widths in the range 0.3 to 2 µm and Ge concentrations varying between 10 and 30% is considered.

View Article and Find Full Text PDF

We demonstrate four wave mixing (FWM) based wavelength conversion of 40 Gbaud differential phase shift keyed (DPSK) and quadrature phase shift keyed (QPSK) signals in a 2.5 cm long silicon germanium waveguide. For a 290 mW pump power, bit error ratio (BER) measurements show approximately a 2-dB power penalty in both cases of DPSK (measured at a BER of 10(-9)) and QPSK (at a BER of 10(-3)) signals that we examined.

View Article and Find Full Text PDF

SiGe alloys present a large Infra-Red transparency window and a full compatibility with the standard Complementary Metal Oxide Semiconductor processing making them suitable for applications in integrated optics. In this paper we report on Mlines characterization of Si(1-x)Ge(x) graded index waveguides at 2.15 µm.

View Article and Find Full Text PDF