In this study, we investigate the flow dynamics in a fixed bed of hydrogel beads using particle tracking velocimetry to compute the velocity field in the middle of the bed for moderate Reynolds numbers (Re=[124,169,203,211]). We discover that even though the flow is stationary at the larger scales, it exhibits complex multiscale spatial dynamics reminiscent of those observed in classical turbulence. We find evidence of the presence of an inertial range and a direct energy cascade, and are able to obtain a value for a "porous" Kolmogorov constant of C_{2}=3.
View Article and Find Full Text PDFNumerous natural and industrial processes involve the mixed displacement of liquids, gases and granular materials through confining structures. However, understanding such three-phase flows remains a formidable challenge, despite their tremendous economic and environmental impact. To unveil the complex interplay of capillary and granular stresses in such flows, we consider here a model configuration where a frictional fluid (an immersed sedimented granular layer) is slowly drained out of a horizontal capillary.
View Article and Find Full Text PDFWe numerically study the dynamics of an ensemble of Marangoni surfers in a two-dimensional and unconfined space. The swimmers are modeled as Gaussian sources of surfactant generating surface tension gradients and are shown to follow the Marangoni flow filtered at their spatial scale in the lubrication regime, an unstable situation leading to spontaneous motion as soon as the Marangoni effect is intense enough. As the system is fully unconstrained, it is possible to study the various dynamical regimes from single swimmer, two-body interaction, to the many-particles case characterized by an efficient particle dispersion.
View Article and Find Full Text PDFThe transitions between two states of a bistable system are investigated experimentally and analyzed in the framework of rare-event statistics. Considering a disk pendulum swept by a flow in a wind tunnel, bistability between two aerodynamic branches is observed, with spontaneous transitions from one branch to the other. The waiting times before spontaneous transition are distributed following a double exponential as a function of the control parameter, spanning 4 orders of magnitude in time, for both transitions.
View Article and Find Full Text PDFWe investigate the sedimentation of initially packed paramagnetic particles in the presence of a homogeneous external magnetic field, in a Hele-Shaw cell filled with water. Although the magnetic susceptibility of the particles is small and the particle-particle-induced magnetic interactions are significantly smaller compared to the gravitational acceleration, we do observe a measurable reduction of the decompaction rate as the amplitude of the applied magnetic field is increased. While induced magnetic dipole-dipole interactions between particles can be either attractive or repulsive depending on the particles relative alignment, our observations reveal an effective overall enhancement of the cohesion of the initial pack of particles due to the induced interactions, very likely promoting internal chain forces in the initial pack of particles.
View Article and Find Full Text PDFAn innovative method based on the traversal of rays, originating from detected particles, through a three-dimensional grid of voxels is presented. The methodology has the main advantage that the outcome of the method is independent of the order of the input; the order of the cameras and the order of the rays presented as input to the algorithm do not influence the outcome. The algorithm finds matches in decreasing value of match quality, ensuring that globally best matches are matched before worse matches.
View Article and Find Full Text PDFThis Letter focuses on the dynamics of a liquid jet impacting the surface of a confined, immersed granular bed. Although previous works have considered the erosion process and surface morphology, less attention has been given to the jet hydrodynamics. Based on laboratory experiments, we show that when the liquid jet forms a crater, two situations arise.
View Article and Find Full Text PDFBubbles play an important role in the transport of chemicals and nutrients in many natural and industrial flows. Their dispersion is crucial to understanding the mixing processes in these flows. Here we report on the dispersion of millimetric air bubbles in a homogeneous and isotropic turbulent flow with a Taylor Reynolds number from 110 to 310.
View Article and Find Full Text PDFWe report an experimental study of the dynamics of two coupled magnetic dipoles. The experiment consists in two coplanar permanent disk magnets separated by a distance d, each allowed to rotate on a fixed parallel axis-each magnet's axis being perpendicular to its dipolar moment vector. A torque of adjustable strength can be externally applied to one of the magnets, the other magnet being free.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2014
Hydrodynamic and magnetic behaviors in a modified experimental setup of the von Kármán sodium flow-where one disk has been replaced by a propeller-are investigated. When the rotation frequencies of the disk and the propeller are different, we show that the fully turbulent hydrodynamic flow undergoes a global bifurcation between two configurations. The bistability of these flow configurations is associated with the dynamics of the central shear layer.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2013
Predicting dynamo self-generation in liquid metal experiments has been an ongoing question for many years. In contrast to simple dynamical systems for which reliable techniques have been developed, the ability to predict the dynamo capacity of a flow and the estimate of the corresponding critical value of the magnetic Reynolds number (the control parameter of the instability) has been elusive, partly due to the high level of turbulent fluctuations of flows in such experiments (with kinetic Reynolds numbers in excess of 10(6)). We address these issues here, using the von Kármán sodium experiment and studying its response to an externally applied magnetic field.
View Article and Find Full Text PDFThe motion of a large, neutrally buoyant, particle freely advected by a turbulent flow is determined experimentally. We demonstrate that both the translational and angular accelerations exhibit very wide probability distributions, a manifestation of intermittency. The orientation of the angular velocity with respect to the trajectory, as well as the translational acceleration conditioned on the spinning velocity, provides evidence of a lift force acting on the particle.
View Article and Find Full Text PDFWe study the six-dimensional dynamics--position and orientation--of a large sphere advected by a turbulent flow. The movement of the sphere is recorded with two high-speed cameras. Its orientation is tracked using a novel, efficient algorithm; it is based on the identification of possible orientation "candidates" at each time step, with the dynamics later obtained from maximization of a likelihood function.
View Article and Find Full Text PDFWe present an apparatus that generates statistically homogeneous and isotropic turbulence with a mean flow that is less than 10% of the fluctuating velocity in a volume of the size of the integral length scale. The apparatus is shaped as an icosahedron where at each of the 12 vertices the flow is driven by independently controlled propellers. By adjusting the driving of the different propellers the isotropy and homogeneity of the flow can be tuned, while keeping the mean flow weak.
View Article and Find Full Text PDFWe present experimental Lagrangian statistics of finite sized, neutrally bouyant, particles transported in an isotropic turbulent flow. The particle's diameter is varied over turbulent inertial scales. Finite size effects are shown not to be trivially related to velocity intermittency.
View Article and Find Full Text PDFWe report measurements of the Lagrangian velocity structure functions of orders 1 through 10 in a high Reynolds number (Taylor microscale Reynolds numbers of up to R(lambda) = 815 ) turbulence experiment. Passive tracer particles are tracked optically in three dimensions and in time, and velocities are calculated from the particle tracks. The structure function anomalous scaling exponents are measured both directly and using extended self-similarity and are found to be more intermittent than their Eulerian counterparts.
View Article and Find Full Text PDFMixing and transport in turbulent flows-which have strong local concentration fluctuations-are essential in many natural and industrial systems including reactions in chemical mixers, combustion in engines and burners, droplet formation in warm clouds, and biological odor detection and chemotaxis. Local concentration fluctuations, in turn, are intimately tied to the problem of the separation of pairs of fluid elements. We have measured this separation rate in an intensely turbulent laboratory flow and have found, in quantitative agreement with the seminal predictions of Batchelor, that the initial separation of the pair plays an important role in the subsequent spreading of the fluid elements.
View Article and Find Full Text PDF