Publications by authors named "Mick Errington"

Arc/Arg3.1 is robustly induced by plasticity-producing stimulation and specifically targeted to stimulated synaptic areas. To investigate the role of Arc/Arg3.

View Article and Find Full Text PDF

Aneuploidies are common chromosomal defects that result in growth and developmental deficits and high levels of lethality in humans. To gain insight into the biology of aneuploidies, we manipulated mouse embryonic stem cells and generated a trans-species aneuploid mouse line that stably transmits a freely segregating, almost complete human chromosome 21 (Hsa21). This "transchromosomic" mouse line, Tc1, is a model of trisomy 21, which manifests as Down syndrome (DS) in humans, and has phenotypic alterations in behavior, synaptic plasticity, cerebellar neuronal number, heart development, and mandible size that relate to human DS.

View Article and Find Full Text PDF

The identification of the genetic determinants specifying neuronal networks in the mammalian brain is crucial for the understanding of the molecular and cellular mechanisms that ultimately control cognitive functions. Here we have generated a targeted allele of the LIM-homeodomain-encoding gene Lhx7 by replacing exons 3-5 with a LacZ reporter. In heterozygous animals, which are healthy, fertile and have no apparent cellular deficit in the forebrain, b-galactosidase activity reproduces the pattern of expression of the wild-type Lhx7 locus.

View Article and Find Full Text PDF

We have investigated synaptic function in the hippocampus in mice of different ages carrying a null mutation in the PrP gene. Experiments carried out in vivo and in vitro in two laboratories revealed no differences in the ability of juvenile and young adult control and PrP-null mice to express long-term potentiation, paired-pulse facilitation, or posttetanic potentiation in either the dentate gyrus or in the CA1 region. However, we found a significant reduction in the level of posttetanic potentiation and long-term potentiation in the CA1 region of aged PrP-null mice.

View Article and Find Full Text PDF

Spatial learning of transgenic mice is often assessed in the Morris watermaze, where mice must use distant cues to locate a submerged platform. Such learning is confounded by species-specific noncognitive swimming strategies. Factor analysis permits cognitive and noncognitive strategies to be disentangled and their association with electrophysiological phenomena to be investigated.

View Article and Find Full Text PDF