We investigate the effect of buffer identity, ionic strength, pH, and organic cosolvents on the rate of strain-promoted azide-alkyne cycloaddition with the widely used DIBAC cyclooctyne. The rate of reaction between DIBAC and a hydrophilic azide is highly tolerant to changes in buffer conditions but is impacted by organic cosolvents. Thus, bioconjugation reactions using DIBAC can be carried out in the buffer that is most compatible with the biomolecules being labeled, but the use of organic cosolvents should be carefully considered.
View Article and Find Full Text PDFNicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors.
View Article and Find Full Text PDFThe nicotinic acetylcholine receptor (nAChR) subtype α6β2* (the asterisk denotes the possible presence of additional subunits) has been identified as an important molecular target for the pharmacotherapy of Parkinson disease and nicotine dependence. The α6 subunit is closely related to the α3 subunit, and this presents a problem in designing ligands that discriminate between α6β2* and α3β2* nAChRs. We used positional scanning mutagenesis of α-conotoxin PeIA, which targets both α6β2* and α3β2*, in combination with mutagenesis of the α6 and α3 subunits, to gain molecular insights into the interaction of PeIA with heterologously expressed α6/α3β2β3 and α3β2 receptors.
View Article and Find Full Text PDFNicotinic acetylcholine receptors (nAChRs) containing α6 and β2 subunits modulate dopamine release in the basal ganglia and are therapeutically relevant targets for treatment of neurological and psychiatric disorders including Parkinson's disease and nicotine dependence. However, the expression profile of β2 and β4 subunits overlap in a variety of tissues including locus ceruleus, retina, hippocampus, dorsal root ganglia, and adrenal chromaffin cells. Ligands that bind α6β2 nAChRs also potently bind the closely related α6β4 subtype.
View Article and Find Full Text PDF