Amyloid plaque deposition is recognized as the primary pathological hallmark of Alzheimer's disease(AD) that precedes other pathological events and cognitive symptoms. Plaque pathology represents itself with an immense polymorphic variety comprising plaques with different stages of amyloid fibrillization ranging from diffuse to fibrillar, mature plaques. The association of polymorphic Aβ plaque pathology with AD pathogenesis, clinical symptoms and disease progression remains unclear.
View Article and Find Full Text PDFLipid dysregulations have been critically implicated in Alzheimer's disease (AD) pathology. Chemical analysis of amyloid-β (Aβ) plaque pathology in transgenic AD mouse models has demonstrated alterations in the microenvironment in the direct proximity of Aβ plaque pathology. In mouse studies, differences in lipid patterns linked to structural polymorphism among Aβ pathology, such as diffuse, immature, and mature fibrillary aggregates, have also been reported.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disorder that develops over decades. Glial cells, including astrocytes are tightly connected to the AD pathogenesis, but their impact on disease progression is still unclear. Our previous data show that astrocytes take up large amounts of aggregated amyloid-beta (Aβ) but are unable to successfully degrade the material, which is instead stored intracellularly.
View Article and Find Full Text PDFBrain metastases represent an important clinical problem for patients with small-cell lung cancer (SCLC). However, the mechanisms underlying SCLC growth in the brain remain poorly understood. Here, using intracranial injections in mice and assembloids between SCLC aggregates and human cortical organoids in culture, we found that SCLC cells recruit reactive astrocytes to the tumour microenvironment.
View Article and Find Full Text PDFWe present a novel, correlative chemical imaging strategy based on multimodal matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), hyperspectral microscopy, and spatial chemometrics. Our workflow overcomes challenges associated with correlative MSI data acquisition and alignment by implementing 1 + 1-evolutionary image registration for precise geometric alignment of multimodal imaging data and their integration in a common, truly multimodal imaging data matrix with maintained MSI resolution (10 μm). This enabled multivariate statistical modeling of multimodal imaging data using a novel multiblock orthogonal component analysis approach to identify covariations of biochemical signatures between and within imaging modalities at MSI pixel resolution.
View Article and Find Full Text PDFIn eukaryotes, carnitine is best known for its ability to shuttle esterified fatty acids across mitochondrial membranes for β-oxidation. It also returns to the cytoplasm, in the form of acetyl-L-carnitine (LAC), some of the resulting acetyl groups for posttranslational protein modification and lipid biosynthesis. While dietary LAC supplementation has been clinically investigated, its effects on cellular metabolism are not well understood.
View Article and Find Full Text PDFFamilial British dementia (FBD) and familial Danish dementia (FDD) are autosomal dominant forms of dementia caused by mutations in the integral membrane protein 2B (ITM2B, also known as BRI2) gene. Secretase processing of mutant BRI2 leads to secretion and deposition of BRI2-derived amyloidogenic peptides, ABri and ADan that resemble APP/β-amyloid (Aβ) pathology, which is characteristic of Alzheimer's disease (AD). Amyloid pathology in FBD/FDD manifests itself predominantly in the microvasculature by ABri/ADan containing cerebral amyloid angiopathy (CAA).
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common neurodegenerative disease. The predominantly sporadic form of AD is age-related, but the underlying pathogenic mechanisms remain not fully understood. Current efforts to combat the disease focus on the main pathological hallmarks, in particular beta-amyloid (Aβ) plaque pathology.
View Article and Find Full Text PDFHerpes simplex virus 1 (HSV-1) and 2 (HSV-2) can infect the central nervous system (CNS) with dire consequences; in children and adults, HSV-1 may cause focal encephalitis, while HSV-2 causes meningitis. In neonates, both viruses can cause severe, disseminated CNS infections with high mortality rates. Here, we differentiated human induced pluripotent stem cells (iPSCs) towards cortical neurons for infection with clinical CNS strains of HSV-1 or HSV-2.
View Article and Find Full Text PDFPoint mutations in the amyloid precursor protein gene () cause familial Alzheimer's disease (AD) by increasing generation or altering conformation of amyloid β (Aβ). Here, we describe the mutation (Δ690-695), the first reported deletion causing autosomal dominant AD. Affected individuals have an age at symptom onset in their early forties and suffer from a rapidly progressing disease course.
View Article and Find Full Text PDFSince its discovery, amyloid-β (Aβ) has been the principal target of investigation of in Alzheimer's disease (AD). Over the years however, no clear correlation was found between the Aβ plaque burden and location, and AD-associated neurodegeneration and cognitive decline. Instead, diagnostic potential of specific Aβ peptides and/or their ratio, was established.
View Article and Find Full Text PDFβ-Amyloid (Aβ) plaque formation is the major pathological hallmark of Alzheimer's disease (AD) and constitutes a potentially critical, early inducer driving AD pathogenesis as it precedes other pathological events and cognitive symptoms by decades. It is therefore critical to understand how Aβ pathology is initiated and where and when distinct Aβ species aggregate. Here, we used metabolic isotope labeling in knock-in mice together with mass spectrometry imaging to monitor the earliest seeds of Aβ deposition through ongoing plaque development.
View Article and Find Full Text PDFMALDI mass spectrometry imaging (MSI) enables label-free, spatially resolved analysis of a wide range of analytes in tissue sections. Quantitative analysis of MSI datasets is typically performed on single pixels or manually assigned regions of interest (ROIs). However, many sparse, small objects such as Alzheimer's disease (AD) brain deposits of amyloid peptides called plaques are neither single pixels nor ROIs.
View Article and Find Full Text PDFOne of the major hallmarks of Alzheimer's disease (AD) pathology is the formation of extracellular amyloid β (Aβ) plaques. While Aβ has been suggested to be critical in inducing and, potentially, driving the disease, the molecular basis of AD pathogenesis is still under debate. Extracellular Aβ plaque pathology manifests itself upon aggregation of distinct Aβ peptides, resulting in morphologically different plaque morphotypes, including mainly diffuse and cored senile plaques.
View Article and Find Full Text PDFImaging mass spectrometry (IMS) is a promising new chemical imaging modality that generates a large body of complex imaging data, which in turn can be approached using multivariate analysis approaches for image analysis and segmentation. Processing IMS raw data is critically important for proper data interpretation and has significant effects on the outcome of data analysis, in particular statistical modeling. Commonly, data processing methods are chosen based on rational motivations rather than comparative metrics, though no quantitative measures to assess and compare processing options have been suggested.
View Article and Find Full Text PDFAmyloid-β (Aβ) pathology in Alzheimer's disease (AD) is characterized by the formation of polymorphic deposits comprising diffuse and cored plaques. Because diffuse plaques are predominantly observed in cognitively unaffected, amyloid-positive (CU-AP) individuals, pathogenic conversion into cored plaques appears to be critical to AD pathogenesis. Herein, we identified the distinct Aβ species associated with amyloid polymorphism in brain tissue from individuals with sporadic AD (s-AD) and CU-AP.
View Article and Find Full Text PDFClin Mass Spectrom
November 2019
Background: Parathyroid hormone-related protein (PTHrP) is involved in intracellular calcium regulation, neural cell proliferation and synaptic transmission. To date, no studies have been performed to evaluate the potential of PTHrP concentrations in cerebrospinal fluid (CSF) as a biomarker of brain pathophysiology. In this study we evaluated the association between CSF concentrations of PTHrP with the core CSF biomarkers of Alzheimer's disease (AD).
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
May 2019
While the molecular mechanisms underlying Alzheimer's disease (AD) remain largely unknown, abnormal accumulation and deposition of beta amyloid (Aβ) peptides into plaques has been proposed as a critical pathological process driving disease progression. Over the last years, neuronal lipid species have been implicated in biological mechanisms underlying amyloid plaque pathology. While these processes comprise genetic features along with lipid signaling as well as direct chemical interaction of lipid species with Aβ mono- and oligomers, more efforts are needed to spatially delineate the exact lipid-Aβ plaque interactions in the brain.
View Article and Find Full Text PDFRecent advances in the understanding of basic pathological mechanisms in various neurological diseases depend directly on the development of novel bioanalytical technologies that allow sensitive and specific chemical imaging at high resolution in cells and tissues. Mass spectrometry-based molecular imaging (IMS) has gained increasing popularity in biomedical research for mapping the spatial distribution of molecular species in situ. The technology allows for comprehensive, untargeted delineation of in situ distribution profiles of metabolites, lipids, peptides and proteins.
View Article and Find Full Text PDFAmyloid plaque formation constitutes one of the main pathological hallmarks of Alzheimer's disease (AD) and is suggested to be a critical factor driving disease pathogenesis. Interestingly, in patients that display amyloid pathology but remain cognitively normal, Aβ deposits are predominantly of diffuse morphology suggesting that cored plaque formation is primarily associated with cognitive deterioration and AD pathogenesis. Little is known about the molecular mechanism responsible for conversion of monomeric Aβ into neurotoxic aggregates and the predominantly cored deposits observed in AD.
View Article and Find Full Text PDFThe basis for selective vulnerability of certain cell types for misfolded proteins (MPs) in neurodegenerative diseases is largely unknown. This knowledge is crucial for understanding disease progression in relation to MPs spreading in the CNS. We assessed this issue in Drosophila by cell-specific expression of human Aβ1-42 associated with Alzheimer's disease.
View Article and Find Full Text PDFMultimodal chemical imaging using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) can provide comprehensive molecular information in situ within the same tissue sections. This is of relevance for studying different brain pathologies such as Alzheimer's disease (AD), where recent data suggest a critical relevance of colocalizing Aβ peptides and neuronal lipids. We here developed a novel trimodal, high-resolution (10 μm) MALDI imaging MS (IMS) paradigm for negative and positive ion mode lipid analysis and subsequent protein ion imaging on the same tissue section.
View Article and Find Full Text PDFMatrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) enables acquisition of spatial distribution maps for molecular species in situ. This can provide comprehensive insights on the pathophysiology of different diseases. However, current sample preparation and MALDI-IMS acquisition methods have limitations in preserving molecular and histological tissue morphology, resulting in interfered correspondence of MALDI-IMS data with subsequently acquired immunofluorescent staining results.
View Article and Find Full Text PDF