Background: Head and neck squamous cell carcinoma (HNSCC) is a debilitating disease with poor survival rates. While the epidermal growth factor receptor (EGFR)-targeting antibody Cetuximab is approved for treatment, responses are limited and the molecular mechanisms driving resistance remain incompletely understood.
Methods: To better understand how cells survive without EGFR activity, we developed an EGFR knockout derivative of the UM-SCC-92 cell line using CRISPR/Cas9 technology.
Unlabelled: NUP98 fusion oncoproteins (FO) are drivers in pediatric leukemias and many transform hematopoietic cells. Most NUP98 FOs harbor an intrinsically disordered region from NUP98 that is prone to liquid-liquid phase separation (LLPS) in vitro. A predominant class of NUP98 FOs, including NUP98-HOXA9 (NHA9), retains a DNA-binding homeodomain, whereas others harbor other types of DNA- or chromatin-binding domains.
View Article and Find Full Text PDFJ Neurol Surg B Skull Base
February 2022
Targeted inhibitors of the PI3 kinase (PI3K) pathway have shown promising but incomplete antitumor activity in preclinical chordoma models. The aim of this study is to advance methodology for a high-throughput drug screen using chordoma models to identify new combination therapies for chordoma. Present work is an in vitro study.
View Article and Find Full Text PDFNucleoporin 98 (NUP98) fusion oncoproteins are observed in a spectrum of hematologic malignancies, particularly pediatric leukemias with poor patient outcomes. Although wild-type full-length NUP98 is a member of the nuclear pore complex, the chromosomal translocations leading to NUP98 gene fusions involve the intrinsically disordered and N-terminal region of NUP98 with over 30 partner genes. Fusion partners include several genes bearing homeodomains or having known roles in transcriptional or epigenetic regulation.
View Article and Find Full Text PDFPurpose: Chordomas are rare and serious tumors with few effective treatments outside of aggressive surgery and radiation. Targeted therapies may present a more effective option for a subset of patients with lesions possessing certain genetic biomarkers.
Methods: A small molecule inhibitor library was tested in patient-derived UM-Chor1 cells to identify targeted therapies with potential efficacy.
The success of immune checkpoint receptor blockade has brought exciting promises for the treatment of head and neck squamous cell carcinoma (HNSCC). While patients who respond to checkpoint inhibitors tend to develop a durable response, <15% of patients with HNSCC respond to immune checkpoint inhibitors, underscoring the critical need to alleviate cancer resistance to immunotherapy. Major advances have been made to elucidate the intrinsic and adaptive resistance mechanisms to immunotherapy.
View Article and Find Full Text PDFHead and neck squamous cell carcinoma (HNSCC) is a common and debilitating form of cancer characterized by poor patient outcomes and low survival rates. In HNSCC, genetic aberrations in phosphatidylinositol 3-kinase (PI3K) and epidermal growth factor receptor (EGFR) pathway genes are common, and small molecules targeting these pathways have shown modest effects as monotherapies in patients. Whereas emerging preclinical data support the combined use of PI3K and EGFR inhibitors in HNSCC, in-human studies have displayed limited clinical success so far.
View Article and Find Full Text PDFObjectives: We sought to describe the genetic complexity of 14 UM-SCC oral cavity cancer cell lines that have remained uncharacterized despite being used as model systems for decades.
Materials And Methods: We performed exome sequencing on 14 oral cavity UM-SCC cell lines and denote the mutational profile of each line. We used a SNP array to profile the multiple copy number variations of each cell line and use immunoblotting to compare alterations to protein expression of commonly amplified genes (EGFR, PIK3CA, etc.
Background: The past 2 decades have seen an increased incidence of head and neck squamous cell carcinoma (HNSCC) in a nontraditional, low-risk patient population (ie, ≤45 years of age, no substance use history), owing to a combination of human papillomavirus (HPV) infection and individual genetic variation.
Methods: Articles positing genetic variants as contributing factors in HNSCC incidence in low-risk, nontraditional patients were identified using a PubMed search, reviewed in detail, and concisely summarized herein.
Results: Recent data suggest that common polymorphisms in DNA repair enzymes, cell-cycle control proteins, apoptotic pathway members, and Fanconi anemia-associated genes likely modulate susceptibility to HNSCC development in low-risk, nontraditional patients.
Tumor infiltrating lymphocytes (TILs) have been shown to be an important prognostic factor in patients with previously untreated head and neck cancer. After organ preservation therapy for laryngeal cancer and subsequent persistence/recurrence, the prognostic value of TILs is unknown. Our goal was to determine if TILs have value as a prognostic biomarker in patients with surgically salvageable persistent/recurrent laryngeal squamous cell carcinoma.
View Article and Find Full Text PDFObjective: Mucoepidermoid carcinoma (MEC) is the most common malignant tumor of the salivary glands. Tumor stage and grade have historically been important predictors of survival. An oncogenic CRTC1- or CRTC3-MAML2 gene fusion has been identified in a number of MECs.
View Article and Find Full Text PDFImmunotherapy is becoming an accepted treatment modality for many patients with cancer and is now approved for use in platinum-refractory recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). Despite these successes, a minority of patients with HNSCC receiving immunotherapy respond to treatment, and few undergo a complete response. Thus, there is a critical need to identify mechanisms regulating immune checkpoints in HNSCC such that one can predict who will benefit, and so novel combination strategies can be developed for non-responders.
View Article and Find Full Text PDFHead and neck squamous cell carcinoma (HNSCC) remains a common and deadly disease. Historically, surgical and chemoradiation treatments have been met with modest success, and understanding of genetic drivers of HNSCC has been limited. With recent next generation sequencing studies focused on HNSCC, we are beginning to understand the genetic landscape of HNSCCs and are starting to identify and advance targeted options for patients.
View Article and Find Full Text PDFOtorhinolaryngol Head Neck Surg
June 2016
Objective: Recent sequencing studies of head and neck squamous cell carcinomas (HNSCCs) have identified the phosphatidylinositol 3-kinase (PI3K) pathway as the most frequently mutated, oncogenic pathway in this cancer type. Despite the frequency of activating genomic alterations in PIK3CA (the gene encoding the catalytic subunit of PI3K, targeted inhibitors of PI3K have not shown clinical efficacy as monotherapies. We hypothesized that co-dependent pathways, including the Ras-MEK-ERK pathway, may still be functional in the presence of PI3K inhibitors and might serve as mediators of this resistance.
View Article and Find Full Text PDFWhile sequencing studies have provided an improved understanding of the genetic landscape of head and neck squamous cell carcinomas (HNSCC), there remains a significant lack of genetic data derived from non-Caucasian cohorts. Additionally, there is wide variation in HNSCC incidence and mortality worldwide both between and within various geographic regions. These epidemiologic differences are in part accounted for by varying exposure to environmental risk factors such as tobacco, alcohol, high risk human papilloma viruses and betel quid.
View Article and Find Full Text PDFJAMA Otolaryngol Head Neck Surg
June 2016
Importance: ERBB2 (formerly HER2) is an important drug target in breast cancer, where anti-ERBB2 therapy has been shown to lead to improvements in disease recurrence and overall survival. ERBB2 status in head and neck squamous cell carcinoma (HNSCC) has not been well studied. Identification of ERBB2-positive tumors and characterization of response to ERBB2 therapy could lead to targeted treatment options in HNSCC.
View Article and Find Full Text PDFGeneration 5 poly(amidoamine) (G5 PAMAM) methotrexate (MTX) conjugates employing two small molecular linkers, G5-(COG-MTX)n, G5-(MFCO-MTX)n were prepared along with the conjugates of the G5-G5 (D) dimer, D-(COG-MTX)n, D-(MFCO-MTX)n. The monomer G5-(COG-MTX)n conjugates exhibited only a weak, rapidly reversible binding to folate binding protein (FBP) consistent with monovalent MTX binding. The D-(COG-MTX)n conjugates exhibited a slow onset, tight-binding mechanism in which the MTX first binds to the FBP, inducing protein structural rearrangement, followed by polymer-protein van der Waals interactions leading to tight-binding.
View Article and Find Full Text PDFThe binding of insulin to the G-quadruplexes formed by the consensus sequence of the insulin-linked polymorphic region (ILPR) was investigated with differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC). The thermal denaturation temperature of insulin was increased by almost 4 °C upon binding to ILPR G-quadruplex DNA as determined by DSC. The thermodynamic parameters (K(D), ΔH, ΔG, and ΔS) of the insulin-G-quadruplex complex were further investigated by temperature-dependent ITC measurement over the range of 10-37 °C.
View Article and Find Full Text PDF