Adult neurogenesis in the mammalian hippocampus is a well-known phenomenon. However, it remains controversial as to what extent adult neurogenesis actually occurs in the adult human hippocampus, and how brain diseases, such as epilepsy, affect human adult neurogenesis. To address these questions, we analyzed immature neuronal marker-expressing (PSA-NCAM+) cells and proliferating neuronal progenitor (Ki67+/HuB+/DCX+) cells in the surgically removed hippocampus of epileptic patients.
View Article and Find Full Text PDFThe inhibitory effects of deep brain stimulation (DBS) were investigated in a rat model of kainic acid (KA)-induced limbic status epilepticus. Wistar rats were injected with 1.0 microg KA into the left amygdala after stereotactic implantation of a guide cannula and electrodes.
View Article and Find Full Text PDFProstaglandin E(2) (PGE(2)) is increased in the brain after kainic acid (KA) treatment. We previously demonstrated that KA also induces PG synthase cyclooxygenase-2 (COX-2) expression rapidly in neurons of the brain and slowly in astrocytes and endothelia. Prevention of KA-induced neuronal damage by nonneuronal COX-2 inhibition suggests a novel modulatory mechanism for neuronal injury by nonneuronal PGs.
View Article and Find Full Text PDFInjection of kainic acid (KA) into the brain causes severe seizures with hippocampal neuron loss. KA has been shown to immediately induce cyclooxygenase-2 (COX-2) expression in hippocampal neurons, indicating that neuronal COX-2 might be involved in neuronal death. In this study, however, we reveal that the delayed COX-2 induction in non-neuronal cells after KA injection plays an important role in hippocampal neuron loss rather than early COX-2 expression in neurons.
View Article and Find Full Text PDF