Publications by authors named "Michitaka Yoshida"

A camera captures multidimensional information of the real world by convolving it into two dimensions using a sensing matrix. The original multidimensional information is then reconstructed from captured images. Traditionally, multidimensional information has been captured by uniform sampling, but by optimizing the sensing matrix, we can capture images more efficiently and reconstruct multidimensional information with high quality.

View Article and Find Full Text PDF

The unprecedented success of deep convolutional neural networks (CNN) on the task of video-based human action recognition assumes the availability of good resolution videos and resources to develop and deploy complex models. Unfortunately, certain budgetary and environmental constraints on the camera system and the recognition model may not be able to accommodate these assumptions and require reducing their complexity. To alleviate these issues, we introduce a deep sensing solution to directly recognize human actions from coded exposure images.

View Article and Find Full Text PDF