Publications by authors named "Michio Kida"

A highly efficient dynamic kinetic resolution of cyclic halohydrins was achieved by the asymmetric transfer hydrogenation of racemic α-haloketones. Bifunctional oxo-tethered Ru(II) catalysts could promote the reduction without deterioration of halogens. By structural tuning of the catalyst, chiral alcohols having halogen, ester, carboxamide, and sulfone functions were obtained variably with excellent diastereo- and enantioselectivities (up to >99:1 d.

View Article and Find Full Text PDF

We use transient electrical measurements to investigate the details of self-heating and charge trapping in graphene transistors encapsulated in hexagonal boron nitride (h-BN) and operated under strongly nonequilibrium conditions. Relative to more standard devices fabricated on SiO substrates, encapsulation is shown to lead to an enhanced immunity to charge trapping, the influence of which is only apparent under the combined influence of strong gate and drain electric fields. Although the precise source of the trapping remains to be determined, one possibility is that the strong gate field may lower the barriers associated with native defects in the h-BN, allowing them to mediate the capture of energetic carriers from the graphene channel.

View Article and Find Full Text PDF

A small forbidden gap matched to low-energy photons (meV) and a quasi-Dirac electron system are both definitive characteristics of bilayer graphene (GR) that has gained it considerable interest in realizing a broadly tunable sensor for application in the microwave region around gigahertz (GHz) and terahertz (THz) regimes. In this work, a systematic study is presented which explores the GHz/THz detection limit of both bilayer and single-layer graphene field-effect transistor (GR-FET) devices. Several major improvements to the wiring setup, insulation architecture, graphite source, and bolometric heating of the GR-FET sensor were made in order to extend microwave photoresponse past previous reports of 40 GHz and to further improve THz detection.

View Article and Find Full Text PDF