Congenit Anom (Kyoto)
September 2011
Human epidemiological evidence has led scientists to theorize that undernutrition during gestation is an important early origin of adult diseases. Animal models have successfully demonstrated that maternal diet could contribute to some adult diseases. Undernutrition is perceived harmful in pregnant women, whereas calorie restriction is a strategy proven to extend healthy and maximum lifespan in adult.
View Article and Find Full Text PDFNovel neuropeptides acting as G-protein-coupled receptor (GPCR) ligands are known to be localized in the brain and play a range of physiologic functions, one of which is feeding regulation. We describe the distribution and localization of these recently identified GPCR ligands and review their involvement in neuronal networks, particularly in feeding regulation. This review addresses aspects of some novel GPCR ligands, including feeding-regulating neuropeptides such as orexin, ghrelin, and galanin-like peptide and other known neuropeptides such as neuropeptide Y and pro-opiomelanocortin.
View Article and Find Full Text PDFFeeding polyamine-deficient chow (PDC) to rats decreases blood polyamines, increases the activity of ornithine decarboxylase as an index of polyamine production, and increases resistance to Trypanosoma brucei gambiense (Wellcome strain) (WS) infection. In this study, we investigated the influence on cytokine and nitric oxide (NO) production of feeding PDC to rats infected with WS. At 4 days postinfection with WS, serum concentration of interleukin (IL)-12, tumor necrosis factor-alpha, interferon-gamma, IL-10, and NO increased in PDC-fed rats; however, IL-12 concentration in normal chow (NC)-fed rats did not increase.
View Article and Find Full Text PDFBoth proopiomelanocortin (POMC) and ghrelin peptides are implicated in the feeding regulation. The synaptic relationships between POMC- and ghrelin-containing neurons in the hypothalamic arcuate nucleus were studied using double-immunostaining methods at the light and electron microscope levels. Many POMC-like immunoreactive axon terminals were found to be apposed to ghrelin-like immunoreactive neurons and also to make synapses with ghrelin-like immunoreactive neuronal perikarya and dendritic processes.
View Article and Find Full Text PDF