Of 10 mammalian secreted phospholipase A(2) (sPLA(2)) enzymes identified to date, group V and X sPLA(2)s, which are two potent plasma membrane-acting sPLA(2)s, are capable of preventing host cells from being infected with adenovirus, and this anti-viral action depends on the conversion of phosphatidylcholine (PC) to lysophosphatidylcholine (LPC) in the host cell membrane. Here, we show that human group III sPLA(2), which is structurally more similar to bee venom PLA(2) than to other mammalian sPLA(2)s, also has the capacity to inhibit adenovirus infection into host cells. Mass spectrometry (MS) demonstrated that group III sPLA(2) hydrolyzes particular molecular species of PC to generate LPC in human bronchial epithelial cells.
View Article and Find Full Text PDFsPLA2 (secretory phospholipase A2) enzymes have been implicated in various biological events, yet their precise physiological functions remain largely unresolved. In the present study we show that group V and X sPLA2s, which are two potent plasma membrane-acting sPLA2s, are capable of preventing host cells from being infected with an adenovirus. Bronchial epithelial cells and lung fibroblasts pre-expressing group V and X sPLA2s showed marked resistance to adenovirus-mediated gene delivery in a manner dependent on their catalytic activity.
View Article and Find Full Text PDFAlthough a number of sPLA2 (secretory phospholipase A2) enzymes have been identified in mammals, the localization and functions of individual enzymes in human pathologic tissues still remain obscure. In the present study, we have examined the expression and function of sPLA2s in human lung-derived cells and in human lungs with pneumonia. Group IID, V and X sPLA2s were expressed in cultured human bronchial epithelial cells (BEAS-2B) and normal human pulmonary fibroblasts with distinct requirement for cytokines (interleukin-1b, tumour necrosis factor a and interferon-g).
View Article and Find Full Text PDF