Publications by authors named "Michiko Arakawa"

NKAP is a ubiquitously expressed nucleoplasmic protein that is currently known as a transcriptional regulatory molecule via its interaction with HDAC3 and spliceosomal proteins. Here, we report a disorder of transcriptional regulation due to missense mutations in the X chromosome gene, NKAP. These mutations are clustered in the C-terminal region of NKAP where NKAP interacts with HDAC3 and post-catalytic spliceosomal complex proteins.

View Article and Find Full Text PDF

In a clinical setting, the number of organ systems involved is crucial for the differential diagnosis of congenital genetic disorders. When more than one organ system is involved, a syndromic diagnosis is suspected. In this report, we describe three patients with apparently syndromic features.

View Article and Find Full Text PDF

Cellular homeostasis is maintained by the highly organized cooperation of intracellular trafficking systems, including COPI, COPII, and clathrin complexes. COPI is a coatomer protein complex responsible for intracellular protein transport between the endoplasmic reticulum and the Golgi apparatus. The importance of such intracellular transport mechanisms is underscored by the various disorders, including skeletal disorders such as cranio-lenticulo-sutural dysplasia and osteogenesis imperfect, caused by mutations in the COPII coatomer complex.

View Article and Find Full Text PDF

Alagille syndrome is a multisystem developmental disorder characterized by bile duct paucity, congenital heart disease, vertebral anomalies, posterior embryotoxon, and characteristic facial features. Alagille syndrome is typically the result of germline mutations in JAG1 or NOTCH2 and is one of several human diseases caused by Notch signaling abnormalities. A wide phenotypic spectrum has been well documented in Alagille syndrome.

View Article and Find Full Text PDF

Rubinstein-Taybi syndrome (RSTS) is a multisystem developmental disorder characterized by facial dysmorphisms, broad thumbs and halluces, growth retardation, and intellectual disability. In about 8% of RSTS cases, mutations are found in EP300. Previously, the EP300 mutation has been shown to cause the highly variable RSTS phenotype.

View Article and Find Full Text PDF

Clinical phenotypes in individuals with a supernumerary marker chromosome (SMC) are mainly caused by gene dosage effects due to the genes located on the SMC. An additional effect may result from uniparental disomy (UPD). Consequently, the occurrence of UPD may be a confounding factor in identifying genotype-phenotype correlations in SMC syndromes.

View Article and Find Full Text PDF