Publications by authors named "Michikami T"

Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe to Fe and dehydration developed.

View Article and Find Full Text PDF

The Hayabusa2 spacecraft collected samples from the surface of the carbonaceous near-Earth asteroid (162173) Ryugu and brought them to Earth. The samples were expected to contain organic molecules, which record processes that occurred in the early Solar System. We analyzed organic molecules extracted from the Ryugu surface samples.

View Article and Find Full Text PDF

Samples of the carbonaceous asteroid (162173) Ryugu were collected and brought to Earth by the Hayabusa2 spacecraft. We investigated the macromolecular organic matter in Ryugu samples and found that it contains aromatic and aliphatic carbon, ketone, and carboxyl functional groups. The spectroscopic features of the organic matter are consistent with those in chemically primitive carbonaceous chondrite meteorites that experienced parent-body aqueous alteration (reactions with liquid water).

View Article and Find Full Text PDF

The near-Earth carbonaceous asteroid (162173) Ryugu is expected to contain volatile chemical species that could provide information on the origin of Earth's volatiles. Samples of Ryugu were retrieved by the Hayabusa2 spacecraft. We measured noble gas and nitrogen isotopes in Ryugu samples and found that they are dominated by presolar and primordial components, incorporated during Solar System formation.

View Article and Find Full Text PDF
Article Synopsis
  • The Hayabusa2 spacecraft successfully returned to Earth from the asteroid 162173 Ryugu on December 6, 2020, and samples were recovered the next day.
  • The extracted gas from the sample container contained helium and neon and had unique extraterrestrial ratios, indicating some contamination from Earth’s atmosphere.
  • This mission marks the first successful return of gas species from a near-Earth asteroid, and discussions are held regarding the fragmentation of Ryugu grains in relation to the gas composition.
View Article and Find Full Text PDF
Article Synopsis
  • Samples from the carbonaceous asteroid Ryugu, collected by the Hayabusa2 spacecraft, show evidence of carbon dioxide-bearing water inclusions in a pyrrhotite crystal, suggesting its parent asteroid formed in the outer Solar System.
  • The analyzed samples contain few high-temperature materials like chondrules, yet are abundant in low-temperature formation products like phyllosilicates and carbonates, indicating aqueous alteration in a low temperature, high pH environment.
  • Numerical simulations reveal that Ryugu's parent body likely formed about 2 million years after the Solar System began to develop, based on the mineralogical and physical properties of the samples.
View Article and Find Full Text PDF

Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites.

View Article and Find Full Text PDF

Carbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids. Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We measured the mineralogy and bulk chemical and isotopic compositions of Ryugu samples.

View Article and Find Full Text PDF

The Hayabusa2 spacecraft investigated the C-type (carbonaceous) asteroid (162173) Ryugu. The mission performed two landing operations to collect samples of surface and subsurface material, the latter exposed by an artificial impact. We present images of the second touchdown site, finding that ejecta from the impact crater was present at the sample location.

View Article and Find Full Text PDF
Article Synopsis
  • The asteroid Ryugu is a primitive carbon-rich body that contains water and organic compounds, and samples were collected from its surface by the Hayabusa2 spacecraft on February 21, 2019.
  • Analysis of images and global surface colors reveals that the asteroid's surface exhibits color variations due to solar heating and space weathering.
  • The interaction of Hayabusa2’s thrusters with the surface indicates that dark, fine grains were disturbed, while the relationship between craters and color changes suggests Ryugu underwent significant surface changes in a short timeframe, possibly linked to its previous proximity to the Sun.
View Article and Find Full Text PDF

Carbonaceous (C-type) asteroids are relics of the early Solar System that have preserved primitive materials since their formation approximately 4.6 billion years ago. They are probably analogues of carbonaceous chondrites and are essential for understanding planetary formation processes.

View Article and Find Full Text PDF

The Hayabusa2 spacecraft arrived at the near-Earth carbonaceous asteroid 162173 Ryugu in 2018. We present Hayabusa2 observations of Ryugu's shape, mass, and geomorphology. Ryugu has an oblate "spinning top" shape, with a prominent circular equatorial ridge.

View Article and Find Full Text PDF

The near-Earth carbonaceous asteroid 162173 Ryugu is thought to have been produced from a parent body that contained water ice and organic molecules. The Hayabusa2 spacecraft has obtained global multicolor images of Ryugu. Geomorphological features present include a circum-equatorial ridge, east-west dichotomy, high boulder abundances across the entire surface, and impact craters.

View Article and Find Full Text PDF

Regolith particles on the asteroid Itokawa were recovered by the Hayabusa mission. Their three-dimensional (3D) structure and other properties, revealed by x-ray microtomography, provide information on regolith formation. Modal abundances of minerals, bulk density (3.

View Article and Find Full Text PDF

High-resolution images of the surface of asteroid Itokawa from the Hayabusa mission reveal it to be covered with unconsolidated millimeter-sized and larger gravels. Locations and morphologic characteristics of this gravel indicate that Itokawa has experienced considerable vibrations, which have triggered global-scale granular processes in its dry, vacuum, microgravity environment. These processes likely include granular convection, landslide-like granular migrations, and particle sorting, resulting in the segregation of the fine gravels into areas of potential lows.

View Article and Find Full Text PDF

Rendezvous of the Japanese spacecraft Hayabusa with the near-Earth asteroid 25143 Itokawa took place during the interval September through November 2005. The onboard camera imaged the solid surface of this tiny asteroid (535 meters by 294 meters by 209 meters) with a spatial resolution of 70 centimeters per pixel, revealing diverse surface morphologies. Unlike previously explored asteroids, the surface of Itokawa reveals both rough and smooth terrains.

View Article and Find Full Text PDF