Optimal treatments depend on numerous factors such as drug chemical properties, disease biology, and patient characteristics to which the treatment is applied. To realize the promise of AI in healthcare, there is a need for designing systems that can capture patient heterogeneity and relevant biomedical knowledge. Here we present PlaNet, a geometric deep learning framework that reasons over population variability, disease biology, and drug chemistry by representing knowledge in the form of a massive clinical knowledge graph that can be enhanced by language models.
View Article and Find Full Text PDF