Publications by authors named "Michielin F"

Objective: In this study, we aimed to evaluate the death risk factors of patients included in the sepsis protocol bundle, using clinical data from qSOFA, SIRS, and comorbidities, as well as development of a mortality risk score.

Design: This retrospective cohort study was conducted between 2016 and 2021.

Setting: Two university hospitals in Brazil.

View Article and Find Full Text PDF

Isolation of tissue-specific fetal stem cells and derivation of primary organoids is limited to samples obtained from termination of pregnancies, hampering prenatal investigation of fetal development and congenital diseases. Therefore, new patient-specific in vitro models are needed. To this aim, isolation and expansion of fetal stem cells during pregnancy, without the need for tissue samples or reprogramming, would be advantageous.

View Article and Find Full Text PDF

Purpose: The MORPHEUS platform was designed to identify early efficacy signals and evaluate the safety of novel immunotherapy combinations across cancer types. The phase Ib/II MORPHEUS-UC trial (NCT03869190) is evaluating atezolizumab plus magrolimab, niraparib, or tocilizumab in platinum-refractory locally advanced or metastatic urothelial carcinoma (mUC). Additional treatment combinations were evaluated and will be reported separately.

View Article and Find Full Text PDF

Lung infections are one of the leading causes of death worldwide, and this situation has been exacerbated by the emergence of COVID-19. Pre-clinical modelling of viral infections has relied on cell cultures that lack 3D structure and the context of lung extracellular matrices. Here, we propose a bioreactor-based, whole-organ lung model of viral infection.

View Article and Find Full Text PDF

Three-dimensional hydrogel-based organ-like cultures can be applied to study development, regeneration, and disease in vitro. However, the control of engineered hydrogel composition, mechanical properties and geometrical constraints tends to be restricted to the initial time of fabrication. Modulation of hydrogel characteristics over time and according to culture evolution is often not possible.

View Article and Find Full Text PDF

The human developmental processes during the early post-implantation stage instruct the specification and organization of the lineage progenitors into a body plan. These processes, which include patterning, cell sorting, and establishment of the three germ layers, have been classically studied in non-human model organisms and only recently, through micropatterning technology, in a human-specific context. Micropatterning technology has unveiled mechanisms during patterning and germ layer specification; however, cell sorting and their segregation in specific germ layer combinations have not been investigated yet in a human-specific system.

View Article and Find Full Text PDF

Background: This phase 1b study (NCT02323191) evaluated the safety, antitumor activity, pharmacokinetics, and pharmacodynamics of colony-stimulating factor-1 receptor-blocking monoclonal antibody (mAb) emactuzumab in combination with the programmed cell death-1 ligand (PD-L1)-blocking mAb atezolizumab in patients with advanced solid tumors naïve or experienced for immune checkpoint blockers (ICBs).

Methods: Emactuzumab (500-1350 mg flat) and atezolizumab (1200 mg flat) were administered intravenously every 3 weeks. Dose escalation of emactuzumab was conducted using the 3+3 design up to the maximum tolerated dose (MTD) or optimal biological dose (OBD).

View Article and Find Full Text PDF

The circadian clock has paramount implications in physiology and pathology. Although the circadian clock has been widely investigated in adults, up to now very little is known about how circadian rhythms emerge during embryonic development. Some studies about the ontology of the circadian system are focused on the development of the central pacemaker, whereas there is still no agreement about the development of the circadian clock in peripheral tissues.

View Article and Find Full Text PDF
Article Synopsis
  • Metastatic breast cancer cells thrive in soft microenvironments, which influence their response to cancer treatments, particularly their resilience against oxidative stress.
  • Research reveals that a soft extracellular matrix enhances mitochondrial activity and increases the production of reactive oxygen species, leading to a stronger antioxidant response in cancer cells.
  • In mouse models, disrupting specific mitochondrial dynamics and antioxidant pathways can restore sensitivity to chemotherapy drugs like cisplatin, suggesting new strategies to prevent cancer recurrence.
View Article and Find Full Text PDF

Objective: to evaluate the performance of the quickSOFA scores and Systemic Inflammatory Response Syndrome as predictors of clinical outcomes in patients admitted to an emergency service.

Method: a retrospective cohort study, involving adult clinical patients admitted to the emergency service. Analysis of the ROC curve was performed to assess the prognostic indexes between scores and outcomes of interest.

View Article and Find Full Text PDF

Purpose: This paper aims to build upon previous work to definitively establish in vitro models of murine pseudoglandular stage lung development. These can be easily translated to human fetal lung samples to allow the investigation of lung development in physiologic and pathologic conditions.

Methods: Lungs were harvested from mouse embryos at E12.

View Article and Find Full Text PDF

Recent advancements in cell engineering have succeeded in manipulating cell identity with the targeted overexpression of specific cell fate determining transcription factors in a process named transcriptional programming. Neurogenin2 (NGN2) is sufficient to instruct pluripotent stem cells (PSCs) to acquire a neuronal identity when delivered with an integrating system, which arises some safety concerns for clinical applications. A non-integrating system based on modified messenger RNA (mmRNA) delivery method, represents a valuable alternative to lentiviral-based approaches.

View Article and Find Full Text PDF

The specification of the hepatic identity during human liver development is strictly controlled by extrinsic signals, yet it is still not clear how cells respond to these exogenous signals by activating secretory cascades, which are extremely relevant, especially in 3D self-organizing systems. Here, we investigate how the proteins secreted by human pluripotent stem cells (hPSCs) in response to developmental exogenous signals affect the progression from endoderm to the hepatic lineage, including their competence to generate nascent hepatic organoids. By using microfluidic confined environment and stable isotope labeling with amino acids in cell culture-coupled mass spectrometry (SILAC-MS) quantitative proteomic analysis, we find high abundancy of extracellular matrix (ECM)-associated proteins.

View Article and Find Full Text PDF

Objectives: This study investigated the safety, clinical activity and patient-reported outcomes of patients with diffuse-type tenosynovial giant-cell tumour (dTGCT) of the soft tissue who were treated with emactuzumab, a humanised anti-colony stimulating factor 1 receptor (CSF1R) monoclonal antibody and were followed up for up to 2 years after the start of treatment.

Methods: In this open-label phase 1 study (ClinicalTrials.govNCT01494688), patients received intravenous (IV) emactuzumab from 900 to 2000 mg every two weeks in the dose-escalation phase and at the optimal biological dose of 1000 mg with different schedules in the dose-expansion phase.

View Article and Find Full Text PDF
Article Synopsis
  • A phase Ib study assessed the safety and effectiveness of combining emactuzumab and selicrelumab in patients with advanced solid tumors, particularly focusing on their pharmacokinetics and pharmacodynamics.
  • The drugs were given via IV every three weeks, and while some dose-limiting toxicities were observed, the maximum tolerated doses weren't reached for either drug.
  • Although the treatment resulted in a manageable safety profile and some pharmacodynamic activity, only 40.5% of patients achieved stable disease without significant objective clinical improvements.
View Article and Find Full Text PDF

Autocrine and paracrine signalling are traditionally difficult to study due to the sub-micromolar concentrations involved. This has proven to be especially limiting in the study of embryonic stem cells that rely on such signalling for viability, self-renewal, and proliferation. Microfluidics allows to achieve local concentrations of ligands representative of the in vivo stem cell niche, gaining more precise control over the cell microenvironment, as well as to manipulate ligands availability with high temporal resolution and minimal amount of reagents.

View Article and Find Full Text PDF

Rationale: The RECIST guideline defines four categories of response to treatment for cancer patients according to post-baseline changes in tumor burden, hence ignoring disease history. However, if left untreated, tumors grow exponentially, implying that pretreatment changes in tumor size are key to thoroughly assess efficacy. We present a model-based approach to estimate the rates of changes in tumor mass, before and after treatment onset.

View Article and Find Full Text PDF

Organoids have extensive therapeutic potential and are increasingly opening up new avenues within regenerative medicine. However, their clinical application is greatly limited by the lack of effective GMP-compliant systems for organoid expansion in culture. Here, we envisage that the use of extracellular matrix (ECM) hydrogels derived from decellularized tissues (DT) can provide an environment capable of directing cell growth.

View Article and Find Full Text PDF

Purpose: This study investigated the safety and clinical activity of lumretuzumab, a humanised antihuman epidermal growth factor receptor 3 (HER3) monoclonal antibody, in combination with carboplatin and paclitaxel in first-line treatment of patients with squamous non-small cell lung cancer (sqNSCLC). HER3 ligand heregulin and HER3 protein expression were evaluated as potential biomarkers of clinical activity.

Patients And Methods: This open-label, phase Ib/II study enrolled patients receiving lumretuzumab at 800 mg (flat) in combination with carboplatin (area under the curve (AUC) 6 mg/mL×min) and paclitaxel (200 mg/m) administered intravenously on a every 3-week schedule.

View Article and Find Full Text PDF

Background: Emactuzumab is a monoclonal antibody against the colony-stimulating factor-1 receptor and targets tumor-associated macrophages (TAMs). This study assessed the safety, clinical activity, pharmacokinetics (PK) and pharmacodynamics (PD) of emactuzumab, as monotherapy and in combination with paclitaxel, in patients with advanced solid tumors.

Patients And Methods: This open-label, phase Ia/b study comprised two parts (dose escalation and dose expansion), each containing two arms (emactuzumab, every 2 or 3 weeks, as monotherapy or in combination with paclitaxel 80 mg/m2 weekly).

View Article and Find Full Text PDF

Mechanical stress has been proven to be an important factor interfering with many biological functions through mechano-sensitive elements within the cells. Despite the current interest in mechano-transduction, the development of suitable experimental tools is still characterized by the strife to design a compact device that allows high-magnification real-time imaging of the stretched cells, thus enabling to follow the dynamics of cellular response to mechanical stimulations. Here we present a microfluidic multi-layered chip that allows mechanical deformation of adherent cells maintaining a fixed focal plane, while allowing independent control of the soluble microenvironment.

View Article and Find Full Text PDF

Combination of targeted therapies is expected to provide superior efficacy in the treatment of cancer either by enhanced antitumor activity or by preventing or delaying the development of resistance. Common challenges in developing combination therapies include the potential of additive and aggravated toxicities associated with pharmacologically related adverse effects. We have recently reported that combination of anti-HER2 and anti-HER3 antibodies, pertuzumab and lumretuzumab, along with paclitaxel chemotherapy in metastatic breast cancer, resulted in a high incidence of diarrhea that ultimately limited further clinical development of this combination.

View Article and Find Full Text PDF

Unlabelled: Purpose To investigate the safety and clinical activity of comprehensive human epidermal growth factor receptor (HER) family receptor inhibition using lumretuzumab (anti-HER3) and pertuzumab (anti-HER2) in combination with paclitaxel in patients with metastatic breast cancer (MBC). Methods This phase Ib study enrolled 35 MBC patients (first line or higher) with HER3-positive and HER2-low (immunohistochemistry 1+ to 2+ and in-situ hybridization negative) tumors. Patients received lumretuzumab (1000 mg in Cohort 1; 500 mg in Cohorts 2 and 3) plus pertuzumab (840 mg loading dose [LD] followed by 420 mg in Cohorts 1 and 2; 420 mg without LD in Cohort 3) every 3 weeks, plus paclitaxel (80 mg/m weekly in all cohorts).

View Article and Find Full Text PDF

This study investigated the safety, clinical activity, and target-associated biomarkers of lumretuzumab, a humanized, glycoengineered, anti-HER3 monoclonal antibody (mAb), in combination with the EGFR-blocking agents erlotinib or cetuximab in patients with advanced HER3-positive carcinomas. The study included two parts: dose escalation and dose extension phases with lumretuzumab in combination with either cetuximab or erlotinib, respectively. In both parts, patients received lumretuzumab doses from 400 to 2,000 mg plus cetuximab or erlotinib according to standard posology, respectively.

View Article and Find Full Text PDF

We report that the efficiency of reprogramming human somatic cells to induced pluripotent stem cells (hiPSCs) can be dramatically improved in a microfluidic environment. Microliter-volume confinement resulted in a 50-fold increase in efficiency over traditional reprogramming by delivery of synthetic mRNAs encoding transcription factors. In these small volumes, extracellular components of the TGF-β and other signaling pathways exhibited temporal regulation that appears critical to acquisition of pluripotency.

View Article and Find Full Text PDF