Neuroscience education is challenged by rapidly evolving technology and the development of interdisciplinary approaches for brain research. The Human Brain Project (HBP) Education Programme aimed to address the need for interdisciplinary expertise in brain research by equipping a new generation of researchers with skills across neuroscience, medicine, and information technology. Over its ten year duration, the programme engaged over 1,300 experts and attracted more than 5,500 participants from various scientific disciplines in its blended learning curriculum, specialised schools and workshops, and events fostering dialogue among early-career researchers.
View Article and Find Full Text PDFWhole brain network models are now an established tool in scientific and clinical research, however their use in a larger workflow still adds significant informatics complexity. We propose a tool, RateML, that enables users to generate such models from a succinct declarative description, in which the mathematics of the model are described without specifying how their simulation should be implemented. RateML builds on NeuroML's Low Entropy Model Specification (LEMS), an XML based language for specifying models of dynamical systems, allowing descriptions of neural mass and discretized neural field models, as implemented by the Virtual Brain (TVB) simulator: the end user describes their model's mathematics once and generates and runs code for different languages, targeting both CPUs for fast single simulations and GPUs for parallel ensemble simulations.
View Article and Find Full Text PDFNeuroscience models commonly have a high number of degrees of freedom and only specific regions within the parameter space are able to produce dynamics of interest. This makes the development of tools and strategies to efficiently find these regions of high importance to advance brain research. Exploring the high dimensional parameter space using numerical simulations has been a frequently used technique in the last years in many areas of computational neuroscience.
View Article and Find Full Text PDFThe Virtual Brain (TVB) is now available as open-source services on the cloud research platform EBRAINS (ebrains.eu). It offers software for constructing, simulating and analysing brain network models including the TVB simulator; magnetic resonance imaging (MRI) processing pipelines to extract structural and functional brain networks; combined simulation of large-scale brain networks with small-scale spiking networks; automatic conversion of user-specified model equations into fast simulation code; simulation-ready brain models of patients and healthy volunteers; Bayesian parameter optimization in epilepsy patient models; data and software for mouse brain simulation; and extensive educational material.
View Article and Find Full Text PDF