Publications by authors named "Michiel van de Panne"

We propose a novel method for exploring the dynamics of physically based animated characters, and learning a task-agnostic action space that makes movement optimization easier. Like several previous article, we parameterize actions as target states, and learn a short-horizon goal-conditioned low-level control policy that drives the agent's state towards the targets. Our novel contribution is that with our exploration data, we are able to learn the low-level policy in a generic manner and without any reference movement data.

View Article and Find Full Text PDF

We present an optimization framework that produces a diverse range of motions for physics-based characters for tasks such as jumps, flips, and walks. This stands in contrast to the more common use of optimization to produce a single optimal motion. The solutions can be optimized to achieve motion diversity or diversity in the proportions of the simulated characters.

View Article and Find Full Text PDF