We demonstrate an optical transmitter consisting of a limiting SiGe BiCMOS driver co-designed and co-packaged with a silicon photonic segmented traveling-wave Mach-Zehnder modulator (MZM). The MZM is split into two traveling-wave segments to increase the bandwidth and to allow a 2-bit DAC functionality. Two limiting driver channels are used to drive these segments, allowing both NRZ and PAM4 signal generation in the optical domain.
View Article and Find Full Text PDFA BiCMOS chip-based real-time intensity modulation/direct detection spatial division multiplexing system is experimentally demonstrated for both optical interconnects. 100 Gbps/λ/core electrical duobinary (EDB) transmission over 1 km 7-core multicore fiber (MCF) is carried out, achieving KP4 forward error correction (FEC) limit (BER < 2E-4). Using optical dispersion compensation, 7 × 100 Gbps/λ/core transmission of both non-return-to-zero (NRZ) and EDB signals over 10 km MCF transmission is achieved with BER lower than 7% overhead hard-decision FEC limit (BER < 3.
View Article and Find Full Text PDF