Publications by authors named "Michiel Van Bel"

Article Synopsis
  • About 60% of genes in Arabidopsis thaliana have been studied, but many non-model plant species rely on assumptions about gene function based on shared ancestry.
  • Differences in plant morphology, physiology, and ecology create unique genes that aren't easily characterized through homology.
  • Challenges like genetic transformation difficulties and prolonged generation times slow down the study of non-model species, though some resources and methods for functional annotation are improving.
View Article and Find Full Text PDF

Sexual reproduction is a major driver of adaptation and speciation in eukaryotes. In diatoms, siliceous microalgae with a unique cell size reduction-restitution life cycle and among the world's most prolific primary producers, sex also acts as the main mechanism for cell size restoration through the formation of an expanding auxospore. However, the molecular regulators of the different stages of sexual reproduction and size restoration are poorly explored.

View Article and Find Full Text PDF

Understanding the underlying mechanisms of plant development is crucial to successfully steer or manipulate plant growth in a targeted manner. Leaves, the primary sites of photosynthesis, are vital organs for many plant species, and leaf growth is controlled by a tight temporal and spatial regulatory network. In this review, we focus on the genetic networks governing leaf cell proliferation, one major contributor to final leaf size.

View Article and Find Full Text PDF

Plant roots originated independently in lycophytes and euphyllophytes, whereas early vascular plants were rootless. The organization of the root apical meristem in euphyllophytes is well documented, especially in the model plant Arabidopsis. However, little is known about lycophyte roots and their molecular innovations during evolution.

View Article and Find Full Text PDF

Background: The availability of chromosome-scale genome assemblies is fundamentally important to advance genetics and breeding in crops, as well as for evolutionary and comparative genomics. The improvement of long-read sequencing technologies and the advent of optical mapping and chromosome conformation capture technologies in the last few years, significantly promoted the development of chromosome-scale genome assemblies of model plants and crop species. In grasses, chromosome-scale genome assemblies recently became available for cultivated and wild species of the Triticeae subfamily.

View Article and Find Full Text PDF

PLAZA is a platform for comparative, evolutionary, and functional plant genomics. It makes a broad set of genomes, data types and analysis tools available to researchers through a user-friendly website, an API, and bulk downloads. In this latest release of the PLAZA platform, we are integrating a record number of 134 high-quality plant genomes, split up over two instances: PLAZA Dicots 5.

View Article and Find Full Text PDF

Advances in high-throughput sequencing have resulted in a massive increase of RNA-Seq transcriptome data. However, the promise of rapid gene expression profiling in a specific tissue, condition, unicellular organism or microbial community comes with new computational challenges. Owing to the limited availability of well-resolved reference genomes, de novo assembled (meta)transcriptomes have emerged as popular tools for investigating the gene repertoire of previously uncharacterized organisms.

View Article and Find Full Text PDF

Gene regulation is a dynamic process in which transcription factors (TFs) play an important role in controlling spatiotemporal gene expression. To enhance our global understanding of regulatory interactions in Arabidopsis thaliana, different regulatory input networks capturing complementary information about DNA motifs, open chromatin, TF-binding and expression-based regulatory interactions were combined using a supervised learning approach, resulting in an integrated gene regulatory network (iGRN) covering 1,491 TFs and 31,393 target genes (1.7 million interactions).

View Article and Find Full Text PDF

Condensins are best known for their role in shaping chromosomes. Other functions such as organizing interphase chromatin and transcriptional control have been reported in yeasts and animals, but little is known about their function in plants. To elucidate the specific composition of condensin complexes and the expression of CAP-D2 (condensin I) and CAP-D3 (condensin II), we performed biochemical analyses in Arabidopsis.

View Article and Find Full Text PDF

In plants, methylation at cytosines often leads to changes in gene expression and inactivation of transposable elements. Changes in cytosine methylation (epimutations) might produce epialleles with distinct phenotypes. We present a genome-wide cytosine methylation profiling method based on bisulfite conversion and next-generation sequencing, which is applicable for plant species with available reference genomes.

View Article and Find Full Text PDF

The Neoproterozoic Era records the transition from a largely bacterial to a predominantly eukaryotic phototrophic world, creating the foundation for the complex benthic ecosystems that have sustained Metazoa from the Ediacaran Period onward. This study focuses on the evolutionary origins of green seaweeds, which play an important ecological role in the benthos of modern sunlit oceans and likely played a crucial part in the evolution of early animals by structuring benthic habitats and providing novel niches. By applying a phylogenomic approach, we resolve deep relationships of the core Chlorophyta (Ulvophyceae or green seaweeds, and freshwater or terrestrial Chlorophyceae and Trebouxiophyceae) and unveil a rapid radiation of Chlorophyceae and the principal lineages of the Ulvophyceae late in the Neoproterozoic Era.

View Article and Find Full Text PDF

Leaf growth is a complex trait for which many similarities exist in different plant species, suggesting functional conservation of the underlying pathways. However, a global view of orthologous genes involved in leaf growth showing conserved expression in dicots and monocots is currently missing. Here, we present a genome-wide comparative transcriptome analysis between Arabidopsis and maize, identifying conserved biological processes and gene functions active during leaf growth.

View Article and Find Full Text PDF

The target of rapamycin (TOR) kinase is a conserved regulatory hub that translates environmental and nutritional information into permissive or restrictive growth decisions. Despite the increased appreciation of the essential role of the TOR complex in plants, no large-scale phosphoproteomics or interactomics studies have been performed to map TOR signalling events in plants. To fill this gap, we combined a systematic phosphoproteomics screen with a targeted protein complex analysis in the model plant Arabidopsis thaliana.

View Article and Find Full Text PDF

Genome annotations offer ample opportunities to study gene functions, biochemical and regulatory pathways, or quantitative trait loci in plants. Determining the quality and completeness of a genome annotation, and maintaining the balance between them, are major challenges, even for genomes of well-studied model organisms. In this review, we present a historical overview of the complexity in different plant genomes and discuss the hurdles and possible solutions in obtaining a complete and high-quality genome annotation.

View Article and Find Full Text PDF

We report here the 98.5 Mbp haploid genome (12,924 protein coding genes) of Ulva mutabilis, a ubiquitous and iconic representative of the Ulvophyceae or green seaweeds. Ulva's rapid and abundant growth makes it a key contributor to coastal biogeochemical cycles; its role in marine sulfur cycles is particularly important because it produces high levels of dimethylsulfoniopropionate (DMSP), the main precursor of volatile dimethyl sulfide (DMS).

View Article and Find Full Text PDF

The draft genome of the moss model, Physcomitrella patens, comprised approximately 2000 unordered scaffolds. In order to enable analyses of genome structure and evolution we generated a chromosome-scale genome assembly using genetic linkage as well as (end) sequencing of long DNA fragments. We find that 57% of the genome comprises transposable elements (TEs), some of which may be actively transposing during the life cycle.

View Article and Find Full Text PDF

In several organisms, particular functional categories of genes, such as regulatory and complex-forming genes, are preferentially retained after whole-genome multiplications but rarely duplicate through small-scale duplication, a pattern referred to as reciprocal retention. This peculiar duplication behavior is hypothesized to stem from constraints on the dosage balance between the genes concerned and their interaction context. However, the evidence for a relationship between reciprocal retention and dosage balance sensitivity remains fragmentary.

View Article and Find Full Text PDF
Article Synopsis
  • Cytosine methylation in plants helps control how genes work and how plants respond to stress.
  • Researchers created a new way to check for methylation patterns in plants, called plant-RRBS, which is faster and can analyze lots of different plant samples at once.
  • By testing this method on two rice lines, they found it could accurately measure methylation in many parts of the plant's DNA.
View Article and Find Full Text PDF

Motivation: Comparative and evolutionary studies utilize phylogenetic trees to analyze and visualize biological data. Recently, several web-based tools for the display, manipulation and annotation of phylogenetic trees, such as iTOL and Evolview, have released updates to be compatible with the latest web technologies. While those web tools operate an open server access model with a multitude of registered users, a feature-rich open source solution using current web technologies is not available.

View Article and Find Full Text PDF

Wheat is a cereal grain and one of the world's major food crops. Recent advances in wheat genome sequencing are by now facilitating its genomic and proteomic analyses. However, little is known about possible differences in total protein levels of hexaploid versus tetraploid wheat cultivars, and also knowledge of phosphorylated wheat proteins is still limited.

View Article and Find Full Text PDF

Selecting and filtering a reference expression and interaction dataset when studying specific pathways and regulatory interactions can be a very time-consuming and error-prone task. In order to reduce the duplicated efforts required to amass such datasets, we have created the CORNET (CORrelation NETworks) platform which allows for easy access to a wide variety of data types: coexpression data, protein-protein interactions, regulatory interactions, and functional annotations. The CORNET platform outputs its results in either text format or through the Cytoscape framework, which is automatically launched by the CORNET website.

View Article and Find Full Text PDF

Protein phosphorylation is one of the most common post-translational modifications (PTMs), which can regulate protein activity and localization as well as protein-protein interactions in numerous cellular processes. Phosphopeptide enrichment techniques enable plant researchers to acquire insight into phosphorylation-controlled signaling networks in various plant species. Most phosphoproteome analyses of plant samples still involve stable isotope labeling, peptide fractionation, and demand a lot of mass spectrometry (MS) time.

View Article and Find Full Text PDF

Transcription factors (TFs) regulate gene expression by binding cis-regulatory elements, of which the identification remains an ongoing challenge owing to the prevalence of large numbers of nonfunctional TF binding sites. Powerful comparative genomics methods, such as phylogenetic footprinting, can be used for the detection of conserved noncoding sequences (CNSs), which are functionally constrained and can greatly help in reducing the number of false-positive elements. In this study, we applied a phylogenetic footprinting approach for the identification of CNSs in 10 dicot plants, yielding 1,032,291 CNSs associated with 243,187 genes.

View Article and Find Full Text PDF