Publications by authors named "Michiel J T van Eijk"

Global warming poses severe threats to agricultural production, including soybean. One of the major mechanisms for organisms to combat heat stress is through heat shock proteins (HSPs) that stabilize protein structures at above-optimum temperatures, by assisting in the folding of nascent, misfolded, or unfolded proteins. The HSP40 subgroups, or the J-domain proteins, functions as co-chaperones.

View Article and Find Full Text PDF

In plant breeding the use of molecular markers has resulted in tremendous improvement of the speed with which new crop varieties are introduced into the market. Single Nucleotide Polymorphism (SNP) genotyping is routinely used for association studies, Linkage Disequilibrium (LD) and Quantitative Trait Locus (QTL) mapping studies, marker-assisted backcrosses and validation of large numbers of novel SNPs. Here we present the KeyGene SNPSelect technology, a scalable and flexible multiplexed, targeted sequence-based, genotyping solution.

View Article and Find Full Text PDF

Triticum urartu (diploid, AA) is the progenitor of the A subgenome of tetraploid (Triticum turgidum, AABB) and hexaploid (Triticum aestivum, AABBDD) wheat. Genomic studies of T. urartu have been useful for investigating the structure, function and evolution of polyploid wheat genomes.

View Article and Find Full Text PDF

Genomics-based breeding of economically important crops such as banana, coffee, cotton, potato, tobacco and wheat is often hampered by genome size, polyploidy and high repeat content. We adapted sequence-based whole-genome profiling (WGP™) technology to obtain insight into the polyploidy of the model plant Nicotiana tabacum (tobacco). N.

View Article and Find Full Text PDF

Conventional marker-based genotyping platforms are widely available, but not without their limitations. In this context, we developed Sequence-Based Genotyping (SBG), a technology for simultaneous marker discovery and co-dominant scoring, using next-generation sequencing. SBG offers users several advantages including a generic sample preparation method, a highly robust genome complexity reduction strategy to facilitate de novo marker discovery across entire genomes, and a uniform bioinformatics workflow strategy to achieve genotyping goals tailored to individual species, regardless of the availability of a reference sequence.

View Article and Find Full Text PDF

Background: Sequencing projects using a clone-by-clone approach require the availability of a robust physical map. The SNaPshot technology, based on pair-wise comparisons of restriction fragments sizes, has been used recently to build the first physical map of a wheat chromosome and to complete the maize physical map. However, restriction fragments sizes shared randomly between two non-overlapping BACs often lead to chimerical contigs and mis-assembled BACs in such large and repetitive genomes.

View Article and Find Full Text PDF

We present whole genome profiling (WGP), a novel next-generation sequencing-based physical mapping technology for construction of bacterial artificial chromosome (BAC) contigs of complex genomes, using Arabidopsis thaliana as an example. WGP leverages short read sequences derived from restriction fragments of two-dimensionally pooled BAC clones to generate sequence tags. These sequence tags are assigned to individual BAC clones, followed by assembly of BAC contigs based on shared regions containing identical sequence tags.

View Article and Find Full Text PDF

Reverse genetics approaches rely on the detection of sequence alterations in target genes to identify allelic variants among mutant or natural populations. Current (pre-) screening methods such as TILLING and EcoTILLING are based on the detection of single base mismatches in heteroduplexes using endonucleases such as CEL 1. However, there are drawbacks in the use of endonucleases due to their relatively poor cleavage efficiency and exonuclease activity.

View Article and Find Full Text PDF

BLAST searchable databases containing insertion flanking sequences have revolutionized reverse genetics in plant research. The development of such databases has so far been limited to a small number of model species and normally requires extensive labour input. Here we describe a highly efficient and widely applicable method that we adapted to identify unique transposon-flanking genomic sequences in Petunia.

View Article and Find Full Text PDF

Application of single nucleotide polymorphisms (SNPs) is revolutionizing human bio-medical research. However, discovery of polymorphisms in low polymorphic species is still a challenging and costly endeavor, despite widespread availability of Sanger sequencing technology. We present CRoPS as a novel approach for polymorphism discovery by combining the power of reproducible genome complexity reduction of AFLP with Genome Sequencer (GS) 20/GS FLX next-generation sequencing technology.

View Article and Find Full Text PDF

Although DNA microarrays are currently the standard tool for genome-wide expression analysis, their application is limited to organisms for which the complete genome sequence or large collections of known transcript sequences are available. Here, we describe a protocol for cDNA-AFLP, an AFLP-based transcript profiling method that allows genome-wide expression analysis in any species without the need for prior sequence knowledge. In essence, the cDNA-AFLP method involves reverse transcription of mRNA into double-stranded cDNA, followed by restriction digestion, ligation of specific adapters and fractionation of this mixture of cDNA fragments into smaller subsets by selective PCR amplification.

View Article and Find Full Text PDF

The AFLP technique is a powerful DNA fingerprinting technology applicable to any organism without the need for prior sequence knowledge. The protocol involves the selective PCR amplification of restriction fragments of a total digest of genomic DNA, typically obtained with a mix of two restriction enzymes. Two limited sets of AFLP primers are sufficient to generate a large number of different primer combinations (PCs), each of which will yield unique fingerprints.

View Article and Find Full Text PDF

The SNPWave marker system, based on SNPs between the reference accessions Colombia-0 and Landsberg erecta (Ler), was used to distinguish a set of 92 Arabidopsis accessions from various parts of the world. In addition, we used these markers to genotype three new recombinant inbred line populations for Arabidopsis, having Ler as a common parent that was crossed with the accessions Antwerp-1, Kashmir-2, and Kondara. The benefit of using multiple populations that contain many similar markers and the fact that all markers are linked to the physical map of Arabidopsis facilitates the quantitative comparison of maps.

View Article and Find Full Text PDF

Progressive familial intrahepatic cholestasis (PFIC) and benign recurrent intrahepatic cholestasis (BRIC) are clinically distinct hereditary disorders. PFIC patients suffer from chronic cholestasis and develop liver fibrosis. BRIC patients experience intermittent attacks of cholestasis that resolve spontaneously.

View Article and Find Full Text PDF

Scalable multiplexed amplification technologies are needed for cost-effective large-scale genotyping of genetic markers such as single nucleotide polymorphisms (SNPs). We present SNPWave, a novel SNP genotyping technology to detect various subsets of sequences in a flexible fashion in a fixed detection format. SNPWave is based on highly multiplexed ligation, followed by amplification of up to 20 ligated probes in a single PCR.

View Article and Find Full Text PDF