Background: Hyperoxia, an arterial oxygen pressure of more than 100 mmHg or 13% O, frequently occurs in hospitalized patients due to administration of supplemental oxygen. Increasing evidence suggests that hyperoxia induces vasoconstriction in the systemic (micro)circulation, potentially affecting organ perfusion. This study addresses effects of hyperoxia on viability, proliferative capacity, and on pathways affecting vascular tone in cultured human microvascular endothelial cells (hMVEC).
View Article and Find Full Text PDFEndothelial colony-forming cells (ECFC) are grown from circulating CD34(+) progenitors present in adult peripheral blood, but during in vitro expansion part of the cells lose CD34. To evaluate whether the regulation of CD34 characterizes the angiogenic phenotypical features of PB-ECFCs, we investigated the properties of CD34(+) and CD34(-) ECFCs with respect to their ability to form capillary-like tubes in 3D fibrin matrices, tip-cell gene expression, and barrier integrity. Selection of CD34(+) and CD34(-) ECFCs from subcultured ECFCs was accomplished by magnetic sorting (FACS: CD34(+): 95 % pos; CD34(-): 99 % neg).
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
November 2015
Circulating angiogenic cells (CACs) are monocyte-derived cells with endothelial characteristics, which contribute to both angiogenesis and arteriogenesis in a paracrine way. Interferon-β (IFN-β) is known to inhibit these divergent processes in animals and patients. We hypothesized that IFN-β might act by affecting the differentiation and function of CACs.
View Article and Find Full Text PDFIntroduction: Efficient implementation of peripheral blood-derived endothelial-colony cells (PB-ECFCs) as a therapeutical tool requires isolation and generation of a sufficient number of cells in ex vivo conditions devoid of animal-derived products. At present, little is known how the isolation and expansion procedure in xenogeneic-free conditions affects the therapeutical capacity of PB-ECFCs.
Results: The findings presented in this study indicate that human platelet lysate (PL) as a serum substitute yields twice more colonies per mL blood compared to the conventional isolation with fetal bovine serum (FBS).
Nephrol Dial Transplant
December 2003
Background: Haemodialysis (HD) with cuprophan (CU) dialysers leads to a severe transient granulocytopenia. In the present study, we challenge the hypothesis that granulocytes sequester within the pulmonary vasculature simply because this is the first vascular bed encountered. This hypothesis is based upon experiments in which activated plasma or complement fragments were infused into animals, and may not pertain to the more complex HD situation.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2003
Creatine kinase (CK) and glycolysis represent important energy-buffering processes in the cardiac myocyte. Although the role of compartmentalized CK in energy transfer has been investigated intensely, similar duties for intracellular glycolysis have not been demonstrated. By measuring the response time of mitochondrial oxygen consumption to dynamic workload jumps (tmito) in isolated rabbit hearts, we studied the effect of inhibiting energetic systems (CK and/or glycolysis) on transcytosolic signal transduction that couples cytosolic ATP hydrolysis to activation of oxidative phosphorylation.
View Article and Find Full Text PDFIn the present study, we investigated renal microvascular responses to ANG-(1-7) and ANG IV. Diameter changes of small interlobular arteries, afferent arterioles, and efferent arterioles were assessed by using isolated perfused hydronephrotic rat kidneys. ANG-(1-7) and ANG IV concentration dependently decreased the diameters of all investigated renal microvessel, however, with a much lower potency than ANG II.
View Article and Find Full Text PDF