Imatinib has a mild toxicity profile, although severe adverse events may develop. In this pharmacogenetic pathway analysis the need for dose reduction and cessation of therapy was tested for an association with single nucleotide polymorphisms (SNPs) in genes related to imatinib pharmacology. Retrospective data from 315 patients with a gastrointestinal stromal tumor who received imatinib 400 mg o.
View Article and Find Full Text PDFBackground: Imatinib 400 mg per day is first-line therapy for patients with gastrointestinal stromal tumours (GISTs). Although clinical benefit is high, progression-free survival (PFS) is variable. This study explores the relationship of single nucleotide polymorphisms (SNPs) in genes related to imatinib pharmacokinetics and pharmacodynamics and PFS in imatinib-treated patients with advanced GIST.
View Article and Find Full Text PDFImatinib trough levels have been associated with its clinical effects. During chronic use of imatinib, CYP2C8 becomes an important metabolizing enzyme because of cytochrome P450 3A4 (CYP3A4) autoinhibition. Single nucleotide polymorphisms (SNPs) in CYP2C8 may affect imatinib trough levels.
View Article and Find Full Text PDFOsteosarcoma is the most common primary malignant bone tumour. Patients often develop lung metastasis and have a poor prognosis despite extensive chemotherapy and surgical resections. Tissue Factor is associated with poor clinical outcome in a wide range of cancer types, and promotes angiogenesis and metastasis.
View Article and Find Full Text PDF