Two-dimensional networks of quantum dots connected by atomic bonds have an electronic structure that is distinct from that of arrays of quantum dots coupled by ligand molecules. We prepared atomically coherent two-dimensional percolative networks of PbSe quantum dots connected via atomic bonds. Here, we show that photoexcitation leads to generation of free charges that eventually decay via trapping.
View Article and Find Full Text PDFThe cooling dynamics of hot charge carriers in colloidal lead chalcogenide nanocrystals is studied by hyperspectral transient absorption spectroscopy. We demonstrate a transient accumulation of charge carriers at a high energy critical point in the Brillouin zone. Using a theoretical study of the cooling rate in lead chalcogenides, we attribute this slowing down of charge carrier cooling to a phonon scattering bottleneck around this critical point.
View Article and Find Full Text PDFSemiconductor nanocrystals are promising for use in cheap and highly efficient solar cells. A high efficiency can be achieved by carrier multiplication (CM), which yields multiple electron-hole pairs for a single absorbed photon. Lead chalcogenide nanocrystals are of specific interest, since their band gap can be tuned to be optimal to exploit CM in solar cells.
View Article and Find Full Text PDFThe cooling and Auger recombination of electron-hole pairs in PbSe quantum dots (QDs) and a series of nanorods (NRs) with similar diameter and varying length was studied by ultrafast pump-probe laser spectroscopy. Hot exciton cooling rates are found to be independent of nanocrystal shape. The energy relaxation rate decreases during cooling of charges, due to reduction of the density of electronic states.
View Article and Find Full Text PDFThe assembly of quantum dots is an essential step toward many of their potential applications. To form conductive solids from colloidal quantum dots, ligand exchange is required. Here we study the influence of ligand replacement on the photoconductivity of PbSe quantum-dot solids, using the time-resolved microwave conductivity technique.
View Article and Find Full Text PDFPbSe quantum-dot solids are of great interest for low cost and efficient photodetectors and solar cells. We have prepared PbSe quantum-dot solids with high charge carrier mobilities using layer-by-layer dip-coating with 1,2-ethanediamine as substitute capping ligands. Here we present a time and energy resolved transient absorption spectroscopy study on the kinetics of photogenerated charge carriers, focusing on 0-5 ps after photoexcitation.
View Article and Find Full Text PDFSolid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electron-hole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range.
View Article and Find Full Text PDFWe show that in films of strongly coupled PbSe quantum dots multiple electron-hole pairs can be efficiently produced by absorption of a single photon (carrier multiplication). Moreover, in these films carrier multiplication leads to the generation of free, highly mobile charge carriers rather than excitons. Using the time-resolved microwave conductivity technique, we observed the production of more than three electron-hole pairs upon absorption of a single highly energetic photon (5.
View Article and Find Full Text PDF