Publications by authors named "Michie M K Ong"

Unlabelled: Acetaminophen (APAP) is a widely used analgesic and antipyretic drug that is safe at therapeutic doses but which can precipitate liver injury at high doses. We have previously found that the antirheumatic drug leflunomide is a potent inhibitor of APAP toxicity in cultured human hepatocytes, protecting them from mitochondria-mediated cell death by inhibiting the mitochondrial permeability transition. The purpose of this study was to explore whether leflunomide protects against APAP hepatotoxicity in vivo and to define the molecular pathways of cytoprotection.

View Article and Find Full Text PDF

A rapid and sensitive ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method was developed and validated for the determination of troglitazone in mouse plasma. Troglitazone and its internal standard (IS), rosiglitazone, were separated on an ACQUITY UPLC BEH C(18) column (1.7 microm particle size, 50 x 2.

View Article and Find Full Text PDF

Troglitazone, a first-generation thiazolidinedione antidiabetic drug, was withdrawn from the market due to an unacceptable risk of idiosyncratic hepatotoxicity. Troglitazone does not cause hepatotoxicity in normal healthy rodents, but it produces mitochondrial injury in vitro at high concentrations. The aim of this study was to explore whether genetic mitochondrial abnormalities might sensitize mice to hepatic adverse effects of troglitazone.

View Article and Find Full Text PDF

Nimesulide, a preferential COX-2 inhibitor, has been associated with rare idiosyncratic hepatotoxicity. The underlying mechanisms of liver injury are unknown, but experimental evidence has identified oxidative stress as a potential hazard and mitochondria as a target. The aim of this study was to explore whether genetic mitochondrial abnormalities, resulting in impaired mitochondrial function and mildly increased oxidative stress, might sensitize mice to the hepatic adverse effects of nimesulide.

View Article and Find Full Text PDF

Nimesulide, a widely used nonsteroidal anti-inflammatory drug containing a nitroaromatic moiety, has been associated with rare but serious hepatic adverse effects. The mechanisms underlying this idiosyncratic hepatotoxicity are unknown; however, both mitochondrial injury and oxidative stress have been implicated in contributing to liver injury in susceptible patients. The aim of this study was, first, to explore whether membrane permeability transition (MPT) could contribute to nimesulide's mitochondrial toxicity and, second, whether metabolism-derived reactive oxygen species (ROS) were responsible for MPT.

View Article and Find Full Text PDF