Publications by authors named "Michie K"

Article Synopsis
  • Sexual reproduction in malaria parasites is crucial for their transmission to mosquitoes and helps researchers explore the evolution of sexual reproduction across different eukaryotes.
  • A genetic study of Plasmodium berghei has identified 348 genes involved in sex and transmission, revealing new targets for potential interventions to block transmission.
  • The study highlights the importance of two proteins, SUN1 and ALLC1, in male fertility by connecting cellular structures necessary for sperm development, suggesting a long-standing role for these proteins across species, including in mouse testes.
View Article and Find Full Text PDF
Article Synopsis
  • Hypomethylating agents (HMAs) are key treatments for Myelodysplastic Neoplasms (MDS) and Acute Myeloid Leukemia (AML), but patients often develop resistance and experience treatment failure.
  • Researchers conducted a genome-wide CRISPR-Cas9 screen in MDS-derived cells, discovering that targeting the gene TOPORS enhances the effectiveness of HMAs by making cancer cells more vulnerable to DNA damage.
  • The study suggests that combining HMAs with strategies to inhibit SUMOylation or TOPORS could be an effective treatment approach for patients with high-risk MDS or AML, without harming normal blood cell production.
View Article and Find Full Text PDF

Background: The unfolded protein response (UPR) is a proteostatic process that is activated in response to endoplasmic reticulum stress. It is currently unclear how aging influences the chronic and adaptive UPR in human skeletal muscle. Here we determined the effect of aging on UPR activation at rest, in response to exercise, and the associations with muscle function.

View Article and Find Full Text PDF

Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are alarmingly common, and treatment is confined to last-line antibiotics. Vancomycin is the treatment of choice for MRSA bacteremia, and treatment failure is often associated with vancomycin-intermediate S. aureus isolates.

View Article and Find Full Text PDF

Cryptophyte algae have a unique phycobiliprotein light-harvesting antenna that fills a spectral gap in chlorophyll absorption from photosystems. However, it is unclear how the antenna transfers energy efficiently to these photosystems. We show that the cryptophyte Hemiselmis andersenii expresses an energetically complex antenna comprising three distinct spectrotypes of phycobiliprotein, each composed of two αβ protomers but with different quaternary structures arising from a diverse α subunit family.

View Article and Find Full Text PDF

Substantial divergence in cardio-metabolic risk, muscle size, and performance exists between men and women. Considering the pivotal role of skeletal muscle in human physiology, we investigated and found, based on RNA sequencing (RNA-seq), that differences in the muscle transcriptome between men and women are largely related to testosterone and estradiol and much less related to genes located on the Y chromosome. We demonstrate inherent unique, sex-dependent differences in muscle transcriptional responses to aerobic, resistance, and combined exercise training in young and older cohorts.

View Article and Find Full Text PDF

The bacterial flagellar motor (BFM) is a rotary nanomachine powered by the translocation of ions across the inner membrane through the stator complex. The stator complex consists of two membrane proteins: MotA and MotB (in H-powered motors), or PomA and PomB (in Na-powered motors). In this study, we used ancestral sequence reconstruction (ASR) to probe which residues of MotA correlate with function and may have been conserved to preserve motor function.

View Article and Find Full Text PDF

In addition to their membrane-bound chlorophyll a/c light-harvesting antenna, the cryptophyte algae have evolved a unique phycobiliprotein antenna system located in the thylakoid lumen. The basic unit of this antenna consists of two copies of an αβ protomer where the α and β subunits scaffold different combinations of a limited number of linear tetrapyrrole chromophores. While the β subunit is highly conserved, encoded by a single plastid gene, the nuclear-encoded α subunits have evolved diversified multigene families.

View Article and Find Full Text PDF

Our understanding of how bacterial pathogens colonize and persist during human infection has been hampered by the limited characterization of bacterial physiology during infection and a research bias toward , fast-growing bacteria. Recent research has begun to address these gaps in knowledge by directly quantifying bacterial mRNA levels during human infection, with the goal of assessing microbial community function at the infection site. However, mRNA levels are not always predictive of protein levels, which are the primary functional units of a cell.

View Article and Find Full Text PDF

Skeletal muscle is critical for maintaining mobility, independence, and metabolic health in older adults. However, a common feature of aging is the progressive loss of skeletal muscle mass and function, which is often accompanied by mitochondrial impairments, oxidative stress, and insulin resistance. Exercise improves muscle strength, mitochondrial health, and cardiorespiratory fitness, but older adults often exhibit attenuated anabolic responses to acute exercise.

View Article and Find Full Text PDF

Paradigms of metabolic strategies employed by photoautotrophic marine picocyanobacteria have been challenged in recent years. Based on genomic annotations, picocyanobacteria are predicted to assimilate organic nutrients via ATP-binding cassette importers, a process mediated by substrate-binding proteins. We report the functional characterisation of a modified sugar-binding protein, MsBP, from a marine Synechococcus strain, MITS9220.

View Article and Find Full Text PDF

It has been shown that the filamentous phage, Pf4, plays an important role in biofilm development, stress tolerance, genetic variant formation and virulence in PAO1. These behaviours are linked to the appearance of superinfective phage variants. Here, we have investigated the molecular mechanism of superinfection as well as how the Pf4 phage can control host gene expression to modulate host behaviours.

View Article and Find Full Text PDF
Article Synopsis
  • Many animals, including birds and fish, can see ultraviolet (UV) light, which is important for activities like foraging and communication in environments rich in UV.
  • In our study of 11 species of anemonefish, we discovered eight functional opsin genes related to their vision, highlighting the evolution of UV sensitivity among coral reef fishes.
  • Our findings included gene duplications of UV-sensitive opsins and detailed expressions of different cone opsins in the false clown anemonefish, paving the way for future research on UV vision in reef environments.
View Article and Find Full Text PDF

Substrate-borne vibratory signals are thought to be one of the most ancient and taxonomically widespread communication signals among animal species, including Drosophila flies. During courtship, the male Drosophila abdomen tremulates (as defined in Busnel et al.) to generate vibrations in the courting substrate.

View Article and Find Full Text PDF

Photosynthetic organisms have developed diverse antennas composed of chromophorylated proteins to increase photon capture. Cryptophyte algae acquired their photosynthetic organelles (plastids) from a red alga by secondary endosymbiosis. Cryptophytes lost the primary red algal antenna, the red algal phycobilisome, replacing it with a unique antenna composed of αβ protomers, where the β subunit originates from the red algal phycobilisome.

View Article and Find Full Text PDF

The opportunistic pathogen is a leading cause of morbidity and mortality worldwide. To survive in both the environment and the host, must cope with redox stress. In , a primary mechanism for protection from redox stress is the antioxidant glutathione (GSH).

View Article and Find Full Text PDF

Recent evidence suggests that the genes an organism needs to survive in an environment drastically differ when alone or in a community. However, it is not known if there are universal functions that enable microbes to persist in a community and if there are functions specific to interactions between microbes native to the same (sympatric) or different (allopatric) environments. Here, we ask how the essential functions of the oral pathogen change during pairwise coinfection in a murine abscess with each of 15 microbes commonly found in the oral cavity and 10 microbes that are not.

View Article and Find Full Text PDF

The merlin-ERM (ezrin, radixin, moesin) family of proteins plays a central role in linking the cellular membranes to the cortical actin cytoskeleton. Merlin regulates contact inhibition and is an integral part of cell-cell junctions, while ERM proteins, ezrin, radixin and moesin, assist in the formation and maintenance of specialized plasma membrane structures and membrane vesicle structures. These two protein families share a common evolutionary history, having arisen and separated via gene duplication near the origin of metazoa.

View Article and Find Full Text PDF

Considerable debate surrounds the question of whether or not quantum mechanics plays a significant, non-trivial role in photosynthetic light harvesting. Many have proposed that quantum superpositions and/or quantum transport phenomena may be responsible for the efficiency and robustness of energy transport present in biological systems. The critical experimental observations comprise the observation of coherent oscillations or "quantum beats" via femtosecond laser spectroscopy, which have been observed in many different light harvesting systems.

View Article and Find Full Text PDF

The role of non-trivial quantum mechanical effects in biology has been the subject of intense scrutiny over the past decade. Much of the focus on potential "quantum biology" has been on energy transfer processes in photosynthetic light harvesting systems. Ultrafast laser spectroscopy of several light harvesting proteins has uncovered coherent oscillations dubbed "quantum beats" that persist for hundreds of femtoseconds and are putative signatures for quantum transport phenomena.

View Article and Find Full Text PDF

In January 2017, two local health departments notified the California Department of Public Health (CDPH) of three cases of coccidioidomycosis among workers constructing a solar power installation (solar farm) in southeastern Monterey County. Coccidioidomycosis, or Valley fever, is an infection caused by inhalation of the soil-dwelling fungus Coccidioides, which is endemic in the southwestern United States, including California. After a 1-3 week incubation period, coccidioidomycosis most often causes influenza-like symptoms or pneumonia, but rarely can lead to severe disseminated disease or death (1).

View Article and Find Full Text PDF

The nuclear magnetic resonance (NMR) structure of the tri-helix bundle (THB) of the m-domain plus C2 (ΔmC2) of myosin-binding protein C (MyBP-C) has revealed a highly flexible seven-residue linker between the structured THB and C2. Bioinformatics shows significant patterns of conservation across the THB-linker sequence, with the linker containing a strictly conserved serine in all MyBP-C isoforms. Clinically linked mutations further support the functional significance of the THB-linker region.

View Article and Find Full Text PDF

Once thought to live independently, bacteria are now known to be highly social organisms. Their behaviors ranges from cooperatively forming complex multispecies communities to fiercely competing for resources. Work over the past fifty years has shown that bacteria communicate through diverse mechanisms, such as exchanging diffusible molecules, exporting molecules in membrane vesicles, and interacting through direct cell-cell contact.

View Article and Find Full Text PDF

The structural effects of three missense mutations clinically linked to hypertrophic cardiomyopathy (HCM) and located in the central domains of cardiac myosin-binding protein C (cMyBP-C) have been determined using small-angle scattering, infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Bioinformatics and modeling were used to initially predict the expected structural impacts and assess the broader implications for function based on sequence conservation patterns. The experimental results generally affirm the predictions that two of the mutations (D745G, P873H) disrupt domain folding, while the third (R820Q) is likely to be entirely solvent exposed and thus more likely to have its impact through its interactions within the sarcomere.

View Article and Find Full Text PDF