The administration of viral vectored vaccines remains one of the most effective ways to respond to the ongoing novel coronavirus disease 2019 (COVID-19) pandemic. However, pre-existing immunity to the viral vector hinders its potency, resulting in a limited choice of viral vectors. Moreover, the basic batch mode of manufacturing vectored vaccines does not allow one to cost-effectively meet the global demand for billions of doses per year.
View Article and Find Full Text PDFFront Bioeng Biotechnol
June 2022
The field of lentiviral vector (LV) production continues to face challenges in large-scale manufacturing, specifically regarding producing enough vectors to meet the demand for treating patients as well as producing high and consistent quality of vectors for efficient dosing. Two areas of interest are the use of stable producer cell lines, which facilitates the scalability of LV production processes as well as making the process more reproducible and robust for clinical applications, and the search of a cell retention device scalable to industrial-size bioreactors. This manuscript investigates a stable producer cell line for producing LVs with GFP as the transgene at shake flask scale and demonstrates LV production at 3L bioreactor scale using the Tangential Flow Depth Filtration (TFDF) as a cell retention device in perfusion mode.
View Article and Find Full Text PDFLentiviral vectors (LVs) are a popular gene delivery tool in cell and gene therapy and they are a primary tool for transduction of T cells for expression of chimeric antigen receptor (CAR) in CAR-T cell therapies. Extensive process and product characterization are required in manufacturing virus-based gene vectors to better control batch-to-batch variability. However, it has been an ongoing challenge to make quantitative assessments of LV product because current analytical tools often are low throughput and lack robustness and standardization is still required.
View Article and Find Full Text PDFThe production of lentiviral vectors (LVs) in human embryonic kidney 293 (HEK293) cells using serum-free medium in a suspension culture for the transduction of chimeric antigen receptor T-cells (CAR-T) can be achieved by different methods. This chapter describes LV production by transient transfection, induction of stable packaging cell lines, and induction of stable producer cell lines.
View Article and Find Full Text PDF