Publications by authors named "Michelle Wong-Brown"

Drug repurposing has potential to improve outcomes for high-grade serous ovarian cancer (HGSOC). Repurposing drugs with PARP family binding activity may produce cytotoxic effects through the multiple mechanisms of PARP including DNA repair, cell-cycle regulation, and apoptosis. The aim of this study was to determine existing drugs that have PARP family binding activity and can be repurposed for treatment of HGSOC.

View Article and Find Full Text PDF
Article Synopsis
  • Excision repair cross-complementation group 2 (ERCC2) is key for DNA repair, and mutations in this gene are found in about 10% of bladder cancer cases, potentially indicating how well patients respond to cisplatin therapy.
  • * In a study, mutations in ERCC2 were found to independently predict prognosis for bladder cancer and significantly change the mutation patterns in the genome, leading to specific mutation hotspots.
  • * Researchers used these findings to create a machine learning model that may help predict harmful ERCC2 mutations, aiming to improve treatment strategies for bladder cancer patients.
View Article and Find Full Text PDF

Gynecological and obstetric infectious diseases are crucial to women's health. There is growing evidence that links the presence of (), an anaerobic oral commensal and potential periodontal pathogen, to the development and progression of various human diseases, including cancers. While the role of this opportunistic oral pathogen has been extensively studied in colorectal cancer in recent years, research on its epidemiological evidence and mechanistic link to gynecological diseases (GDs) is still ongoing.

View Article and Find Full Text PDF

Background: Platinum chemoresistance results in high-grade serous ovarian cancer (HGSOC) disease recurrence. Recent treatment advances using checkpoint inhibitor immunotherapy has not benefited platinum-resistant HGSOC. In ovarian cancer, DNA methyltransferase inhibitors (DNMTi) block methylation and allow expression of silenced genes, primarily affecting immune reactivation pathways.

View Article and Find Full Text PDF

High-grade serous ovarian cancer (HGSOC) is the most common ovarian cancer subtype, and the overall survival rate has not improved in the last three decades. Currently, most patients develop recurrent disease within 3 years and succumb to the disease within 5 years. This is an important area of research, as the major obstacle to the treatment of HGSOC is the development of resistance to platinum chemotherapy.

View Article and Find Full Text PDF
Article Synopsis
  • - This study explores the genetic factors contributing to breast cancer (BC) in families with a history of the disease, focusing on identifying new predisposing genes beyond BRCA1 and BRCA2.
  • - Researchers analyzed a large group of 11,511 non-BRCA familial BC cases alongside cancer-free controls, sequencing hundreds of candidate genes to find associations with breast cancer susceptibility.
  • - Key findings confirm the roles of genes like ATM, PALB2, and CHEK2 in increasing BC risk, while introducing new potential risk genes such as NTHL1 and PARP2, highlighting that many genetic causes in high-risk families involve rare variants with modest risk.
View Article and Find Full Text PDF

Background: Accumulating evidence suggests that breastfeeding exclusivity and duration are positively associated with child cognition. This study investigated whether DNA methylation, an epigenetic mechanism modified by nutrient intake, may contribute to the link between breastfeeding and child cognition. The aim was to quantify the relationship between global DNA methylation and cognition and behavior at 4 years of age.

View Article and Find Full Text PDF

The BCl-2 family has long been identified for its role in apoptosis. Following the initial discovery of BCL-2 in the context of B-cell lymphoma in the 1980s, a number of homologous proteins have since been identified. The members of the Bcl-2 family are designated as such due to their BCL-2 homology (BH) domains and involvement in apoptosis regulation.

View Article and Find Full Text PDF

Background: During the early postnatal period, the impact of nutrition on DNA methylation has not been well studied in humans. The aim was to quantify the relationship between one-carbon metabolism nutrient intake during the first three years of life and global DNA methylation levels at four years.

Design: Childhood dietary intake was assessed using infant feeding questionnaires, food frequency questionnaires, 4-day weighed food records and 24-h food records.

View Article and Find Full Text PDF

Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype with no targeted treatment available. Our previous study identified 38 TNBC-specific genes with altered expression comparing tumour to normal samples. This study aimed to establish whether DNA methylation contributed to these expression changes in the same cohort as well as disease progression from primary breast tumour to lymph node metastasis associated with changes in the epigenome.

View Article and Find Full Text PDF

Rad50 interactor 1 (RINT1) has recently been reported as an intermediate-penetrance (odds ratio 3.24) breast cancer susceptibility gene, as well as a risk factor for Lynch syndrome. The coding regions and exon-intron boundaries of RINT1 were sequenced in 2024 familial breast cancer cases previously tested negative for BRCA1, BRCA2, and PALB2 mutations and 1886 population-matched cancer-free controls using HaloPlex Targeted Enrichment Assays.

View Article and Find Full Text PDF

Background: BRCA1 interacting protein C-terminal helicase 1 (BRIP1) is one of the Fanconi Anaemia Complementation (FANC) group family of DNA repair proteins. Biallelic mutations in BRIP1 are responsible for FANC group J, and previous studies have also suggested that rare protein truncating variants in BRIP1 are associated with an increased risk of breast cancer. These studies have led to inclusion of BRIP1 on targeted sequencing panels for breast cancer risk prediction.

View Article and Find Full Text PDF

Since the identification of BRCA1 there has only ever been described two bi-allelic mutation carriers, one of whom was subsequently shown to be a mono-allelic carrier. The second patient diagnosed with two BRCA1 mutations appears to be accurate but there remain some questions about the missense variant identified in that patient. In this report we have identified a woman who is a bi-allelic mutation carrier of BRCA1 and provide an explanation as to why this patient has a phenotype very similar to that of any mono-allelic mutation carrier.

View Article and Find Full Text PDF

Purpose: Gene panel sequencing is revolutionizing germline risk assessment for hereditary breast cancer. Despite scant evidence supporting the role of many of these genes in breast cancer predisposition, results are often reported to families as the definitive explanation for their family history. We assessed the frequency of mutations in 18 genes included in hereditary breast cancer panels among index cases from families with breast cancer and matched population controls.

View Article and Find Full Text PDF

Breast cancer is the most common female cancer, but it has relatively low rates of p53 mutations, suggesting other mechanisms are responsible for p53 inactivation. We have shown that the p53 isoform, Δ40p53, is highly expressed in breast cancer, where it may contribute to p53 inactivation. Δ40p53 can be produced by alternative splicing of p53 in intron 2 and this is regulated by the formation of G-quadruplex structures in p53 intron 3, from which the nucleotides forming these structures overlap with a common polymorphism, rs17878362.

View Article and Find Full Text PDF

Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype with the worst prognosis and no targeted treatments. TNBC patients are more likely to develop metastases and relapse than patients with other breast cancer subtypes. We aimed to identify TNBC-specific genes and genes associated with lymph node metastasis, one of the first signs of metastatic spread.

View Article and Find Full Text PDF

The breast cancer predisposition gene, BRCA2, has a large number of genetic variants of unknown effect. The variant rs11571833, an A > T transversion in the final exon of the gene that leads to the creation of a stop codon 93 amino acids early (K3326*), is reported as a neutral polymorphism but there is some evidence to suggest an association with an increased risk of breast cancer. We assessed whether this variant was enriched in a cohort of breast cancer cases ascertained through familial cancer clinics compared to population-based non-cancer controls using a targeted sequencing approach.

View Article and Find Full Text PDF

Introduction: PALB2 is emerging as a high-penetrance breast cancer predisposition gene in the order of BRCA1 and BRCA2. However, large studies that have evaluated the full gene rather than just the most common variants in both cases and controls are required before all truncating variants can be included in familial breast cancer variant testing.

Methods: In this study we analyse almost 2000 breast cancer cases sourced from individuals referred to familial cancer clinics, thus representing typical cases presenting in clinical practice.

View Article and Find Full Text PDF

Triple-negative breast cancers (TNBC) lack expression of oestrogen, progesterone and HER2 receptors. The gene expression profiles of TNBCs are similar to those of breast tumours in women with BRCA1 mutations. Reports to date indicate that up to 20 % of TNBC patients harbour germline BRCA mutations; however, the prevalence of BRCA mutations in TNBC patients varies widely between countries and from study to study.

View Article and Find Full Text PDF

Mutation of p53 is a common feature of cancer. Breast cancer is the most common malignancy that develops in women; however, somatic mutation of p53 is rare, suggesting that p53 becomes inactivated by other mechanisms. p53 is expressed as smaller isoforms, some of which inhibit wild-type p53.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a tumour classification that is defined by oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 receptor negativity. TNBCs share a similar gene expression profile to BRCA-mutated tumours, have been shown to carry a high proportion of BRCA mutations and have a more adverse prognosis compared to other types of breast tumours. PALB2 has been shown to be a moderate-penetrance breast cancer susceptibility gene and is involved in the same DNA damage repair pathway as BRCA1 and BRCA2; this raises the possibility that germline PALB2 mutations may be involved in the pathogenesis of TNBCs.

View Article and Find Full Text PDF