Publications by authors named "Michelle Wander"

Consistent methods are essential for generating country and region-specific estimates of greenhouse gas (GHG) emissions used for reporting and policymaking. The estimates of direct NO emissions from U.S.

View Article and Find Full Text PDF

Environmental reservoirs are important to infectious disease transmission and persistence, but empirical analyses are relatively few. The natural environment is a reservoir for prions that cause chronic wasting disease (CWD) and influences the risk of transmission to susceptible cervids. Soil is one environmental component demonstrated to affect prion infectivity and persistence.

View Article and Find Full Text PDF

Annual row crops dominate agriculture around the world and have considerable negative environmental impacts, including significant greenhouse gas emissions. Transformative land-use solutions are necessary to mitigate climate change and restore critical ecosystem services. Alley cropping (AC)-the integration of trees with crops-is an agroforestry practice that has been studied as a transformative, multifunctional land-use solution.

View Article and Find Full Text PDF

We evaluated the accuracy and precision of the CENTURY soil organic matter model for predicting soil organic carbon (SOC) sequestration under rainfed corn-based cropping systems in the US. This was achieved by inversely modeling long-term SOC data obtained from 10 experimental sites where corn, soybean, or wheat were grown with a range of tillage, fertilization, and organic matter additions. Inverse modeling was accomplished using a surrogate model for CENTURY's SOC dynamics sub-model wherein mass balance and decomposition kinetics equations from CENTURY are coded and solved by using a nonlinear regression routine of a standard statistical software package.

View Article and Find Full Text PDF

Plant-soil relations may explain why low-external input (LEI) diversified cropping systems are more efficient than their conventional counterparts. This work sought to identify links between management practices, soil quality changes, and root responses in a long-term cropping systems experiment in Iowa where grain yields of 3-year and 4-year LEI rotations have matched or exceeded yield achieved by a 2-year maize (Zea mays L.) and soybean (Glycine max L.

View Article and Find Full Text PDF

To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using samples from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ultisols in Maryland [MDsoil]) comparing conventional grain systems (Conv) amended with inorganic fertilizers with 3 yr (Med) and longer (Long), more diverse cropping systems amended with manure. A double exponential model was used to estimate the size (Ca, Cs) and decay rates (ka, ks) of active and slow C pools which we compared with total particulate organic matter (POM) and occluded-POM (OPOM). The high-SOC IAsoil containing highly active smectite clays maintained smaller labile pools and higher decay rates than the low-SOC MDsoil containing semi-active kaolinitic clays.

View Article and Find Full Text PDF

The identification and characterization of carbonaceous materials (CMs) that control hydrophobic organic chemical (HOC) sorption is essential to predict the fate and transport of HOCs in soils and sediments. The objectives of this paper are to determine the types of CMs that control HOC sorption in the oxidized and reduced zones of a glacially deposited groundwater sediment in central Illinois, with a special emphasis on the roles of kerogen and black carbon. After collection, the sediments were treated to obtain fractions of the sediment samples enriched in different types of CMs (e.

View Article and Find Full Text PDF

This work builds on a previous study of long-term tillage trials that found use of no-tillage (NT) practices increased soil organic carbon (SOC) sequestration at Monmouth, IL (silt loam soil) by increasing the soil's protective capacity, but did not alter SOC storage in DeKalb, IL (silty clay loam), where higher clay contents provided a protective capacity not affected by tillage. The least limiting water range (LLWR), a multi-factor index of structural quality, predicted observed soil CO2 efflux patterns. Here we consider whether LLWR can predict sequestration trends at a third site, Perry, IL (silt loam soil) where SOC content is lower and bulk density is higher than in previously considered sites, and determine whether pore size characteristics can help explain the influence use of NT practices has had on SOC sequestration at all three locations.

View Article and Find Full Text PDF