Ibuprofen is metabolized to chemically reactive acyl glucuronide and S-acyl-CoA metabolites that are proposed to transacylate glutathione (GSH) forming ibuprofen-S-acyl-GSH (I-SG) in vivo. Herein, we report the detection of novel metabolites of ibuprofen, namely ibuprofen-N-acyl-cysteinylglycine (I-N-CG), ibuprofen-N-acyl-cysteine (I-N-C), and the mercapturic acid conjugate, ibuprofen-S-acyl-N-acetylcysteine (I-S-NAC), in urine from an ibuprofen-dosed volunteer. Thus, analysis of ibuprofen-dosed (Advil, 800 mg, Pfizer, Madison, NJ) human urine extracts by sensitive liquid chromatography tandem mass spectrometric detection resulted in the identification of I-N-CG, I-N-C, and I-S-NAC derivatives as minor metabolites (6.
View Article and Find Full Text PDFCarboxylic acid-containing nonsteroidal anti-inflammatory drugs (NSAIDs) can be metabolized to chemically reactive acyl glucuronide and/or S-acyl-CoA thioester metabolites capable of transacylating GSH. We investigated the metabolism of the NSAID mefenamic acid (MFA) to metabolites that transacylate GSH, leading to MFA-S-acyl-GSH thioester (MFA-SG) formation in incubations with rat and human hepatocytes and in vivo in rat bile. Thus, incubation of MFA (1-500 μM) with rat hepatocytes led to the detection of MFA-1-β-O-acyl glucuronide (MFA-1-β-O-G), MFA-S-acyl-CoA (MFA-SCoA), and MFA-SG by liquid chromatography-tandem mass spectrometric analysis.
View Article and Find Full Text PDFThe 2-methyl substituted indole, 2MI [2-(4-(4-(2,4-dichlorophenylsulfonamido)-2-methyl-1H-indol-5-yloxy)-3-methoxyphenyl)acetic acid] is a potent dual inhibitor of 1) chemoattractant receptor-homologous molecule expressed on T-helper type-2 cells and 2) d-prostanoid receptor. During evaluation as a potential treatment for asthma and allergic rhinitis, 2MI was identified as a mechanism-based inactivator of CYP3A4 in vitro. The inactivation was shown to be irreversible by dialysis and accompanied by an NADPH-dependent increase in 2MI covalent binding to a 55- to 60-kDa microsomal protein, consistent with irreversible binding to CYP3A4.
View Article and Find Full Text PDFFlunoxaprofen (FLX) is a chiral nonsteroidal anti-inflammatory drug that was withdrawn from clinical use because of concerns of potential hepatotoxicity. FLX undergoes highly stereoselective chiral inversion mediated through the FLX-S-acyl-CoA thioester (FLX-CoA) in favor of the (R)-(-)-isomer. Acyl-CoA thioester derivatives of acidic drugs are chemically reactive species that are known to transacylate protein nucleophiles and glutathione (GSH).
View Article and Find Full Text PDFPhenylacetic acid (PAA) represents a substructure of a class of nonsteroidal anti-inflammatory carboxylic acid-containing drugs capable of undergoing metabolic activation in the liver to acylcoenzyme A (CoA)- and/or acyl glucuronide-linked metabolites that are proposed to be associated with the formation of immunogenic, and hence potentially hepatotoxic, drug-protein adducts. Herein, we investigated the ability of PAA to undergo phenylacetyl-S-acyl-CoA thioester (PA-CoA)-mediated covalent binding to protein in incubations with freshly isolated rat hepatocytes in suspension. Thus, when hepatocytes were incubated with phenylacetic acid carboxy-(14)C (100 microM) and analyzed for PA-CoA formation and covalent binding of PAA to protein and over a 3-h time period, both PA-CoA formation and covalent binding to protein increased rapidly, reaching 1.
View Article and Find Full Text PDF