Black Americans are three to four times more likely to develop nondiabetic kidney disease than other populations. Exclusively found in people of recent African (AFR) ancestry, risk variants in Apolipoprotein L1 (APOL1) termed G1 and G2 contribute significantly to this increased susceptibility. Our group and others showed that a missense variant in APOL1, rs73885316 (p.
View Article and Find Full Text PDFAfrican Americans have a significantly higher risk of developing chronic kidney disease, especially focal segmental glomerulosclerosis -, than European Americans. Two coding variants (G1 and G2) in the APOL1 gene play a major role in this disparity. While 13% of African Americans carry the high-risk recessive genotypes, only a fraction of these individuals develops FSGS or kidney failure, indicating the involvement of additional disease modifiers.
View Article and Find Full Text PDFExpression quantitative trait locus (eQTL) studies illuminate genomic variants that regulate specific genes and contribute to fine-mapped loci discovered via genome-wide association studies (GWAS). Efforts to maximize their accuracy are ongoing. Using 240 glomerular (GLOM) and 311 tubulointerstitial (TUBE) micro-dissected samples from human kidney biopsies, we discovered 5371 GLOM and 9787 TUBE genes with at least one variant significantly associated with expression (eGene) by incorporating kidney single-nucleus open chromatin data and transcription start site distance as an "integrative prior" for Bayesian statistical fine-mapping.
View Article and Find Full Text PDFApolipoprotein L1 (APOL1)-associated focal segmental glomerulosclerosis (FSGS) is the dominant form of FSGS in Black individuals. There are no targeted therapies for this condition, in part because the molecular mechanisms underlying APOL1's pathogenic contribution to FSGS are incompletely understood. Studying the transcriptomic landscape of APOL1 FSGS in patient kidneys is an important way to discover genes and molecular behaviors that are unique or most relevant to the human disease.
View Article and Find Full Text PDFThe kidney is an organ of key relevance to blood pressure (BP) regulation, hypertension and antihypertensive treatment. However, genetically mediated renal mechanisms underlying susceptibility to hypertension remain poorly understood. We integrated genotype, gene expression, alternative splicing and DNA methylation profiles of up to 430 human kidneys to characterize the effects of BP index variants from genome-wide association studies (GWASs) on renal transcriptome and epigenome.
View Article and Find Full Text PDFBackground: The G1 and G2 alleles of apolipoprotein L1 (APOL1) are common in the Black population and associated with increased risk of focal segmental glomerulosclerosis (FSGS). The molecular mechanisms linking APOL1 risk variants with FSGS are not clearly understood, and APOL1's natural absence in laboratory animals makes studying its pathobiology challenging.
Methods: In a cohort of 90 Black patients with either FSGS or minimal change disease (MCD) enrolled in the Nephrotic Syndrome Study Network (58% pediatric onset), we used kidney biopsy traits as an intermediate outcome to help illuminate tissue-based consequences of APOL1 risk variants and expression.
To understand the genetics of steroid-sensitive nephrotic syndrome (SSNS), we conducted a genome-wide association study in 987 childhood SSNS patients and 3,206 healthy controls with Japanese ancestry. Beyond known associations in the HLA-DR/DQ region, common variants in NPHS1-KIRREL2 (rs56117924, P=4.94E-20, odds ratio (OR) =1.
View Article and Find Full Text PDFExpression quantitative trait loci (eQTL) studies illuminate the genetics of gene expression and, in disease research, can be particularly illuminating when using the tissues directly impacted by the condition. In nephrology, there is a paucity of eQTL studies of human kidney. Here, we used whole-genome sequencing (WGS) and microdissected glomerular (GLOM) and tubulointerstitial (TI) transcriptomes from 187 individuals with nephrotic syndrome (NS) to describe the eQTL landscape in these functionally distinct kidney structures.
View Article and Find Full Text PDF