Introduction: The epidemiology and prognosis of the isolated traumatic brain injury (TBI) and spinal cord injury (SCI) are well studied. However, the knowledge of the impact of concurrent neurotrauma is very limited.
Research Questions: To characterize the longitudinal incidence of concurrent TBI and SCI and to investigate their combined impact on clinical care and outcomes, compared to a comparative but isolated SCI or TBI.
Introduction: AO Spine RECODE-DCM was a multi-stakeholder priority setting partnership (PSP) to define the top ten research priorities for degenerative cervical myelopathy (DCM). Priorities were generated and iteratively refined using a series of surveys administered to surgeons, other healthcare professionals (oHCP) and people with DCM (PwDCM). The aim of this work was to utilise word clouds to enable the perspectives of people with the condition to be heard earlier in the PSP process than is traditionally the case.
View Article and Find Full Text PDFIntroduction: Degenerative cervical myelopathy (DCM) is a common and disabling condition of symptomatic cervical spinal cord compression secondary to degenerative changes in spinal structures leading to a mechanical stress injury of the spinal cord. RECEDE-Myelopathy aims to test the disease-modulating activity of the phosphodiesterase 3/phosphodiesterase 4 inhibitor Ibudilast as an adjuvant to surgical decompression in DCM.
Methods And Analysis: RECEDE-Myelopathy is a multicentre, double-blind, randomised, placebo-controlled trial.
Trials
June 2021
Objectives: AO Spine REsearch objectives and Common Data Elements for Degenerative Cervical Myelopathy [RECODE-DCM] is a multi-stakeholder consensus process aiming to promote research efficiency in DCM. It aims to establish the top 10 research uncertainties, through a James Lind Alliance Priority Setting Partnership [PSP]. Through a consensus process, research questions are generated and ranked.
View Article and Find Full Text PDFUnlabelled: Degenerative cervical myelopathy (DCM) results from compression of the cervical spine cord as a result of age related changes in the cervical spine, and affects up to 2% of adults, leading to progressive disability. Surgical decompression is the mainstay of treatment, but there remains significant variation in surgical approaches used. This survey was conducted in order to define current practice amongst spine surgeons worldwide, as a possible prelude to further studies comparing surgical approaches.
View Article and Find Full Text PDFStudy Design: Cross-sectional survey.
Objectives: Degenerative cervical myelopathy (DCM) is a common syndrome of acquired spinal cord impairment caused by canal stenosis secondary to arthritic changes of the spine. International guidelines consider physiotherapy an option for mild, stable DCM; however, few studies have been conducted on nonoperative management.
Study Design: Mixed-method consensus process.
Objectives: Degenerative cervical myelopathy (DCM) is a common and disabling condition that arises when mechanical stress damages the spinal cord as a result of degenerative changes in the surrounding spinal structures. RECODE-DCM (search Objectives and ommon ata lements for egenerative ervical yelopathy) aims to improve efficient use of health care resources within the field of DCM by using a multi-stakeholder partnership to define the DCM research priorities, to develop a minimum dataset for DCM clinical studies, and confirm a definition of DCM.
A healthy lifestyle reduces the risk of cardio-vascular disease. As wheelchair-bound individuals with spinal cord injury (SCI) are challenged in their activities, promoting and coaching an active lifestyle is especially relevant. Although there are many commercial activity trackers available for the able-bodied population, including those providing feedback about energy expenditure (EE), activity trackers for the SCI population are largely lacking, or are limited to a small set of activities performed in controlled settings.
View Article and Find Full Text PDFAfter spinal cord injury (SCI), levels of independence are commonly assessed with standardized clinical assessments. However, such tests do not provide information about the actual extent of upper limb activities or the impact on independence of bi- versus unilateral usage throughout daily life following cervical SCI. The objective of this study was to correlate activity intensity and laterality of upper extremity activity measured by body-fixed inertial measurement units (IMUs) with clinical assessment scores of independence.
View Article and Find Full Text PDFBackground: Preclinical investigations in animal models demonstrate that enhanced upper limb (UL) activity during rehabilitation promotes motor recovery following spinal cord injury (SCI). Despite this, following SCI in humans, no commonly applied training protocols exist, and therefore, activity-based rehabilitative therapies (ABRT) vary in frequency, duration, and intensity. Quantification of UL recovery is limited to subjective questionnaires or scattered measures of muscle function and movement tasks.
View Article and Find Full Text PDFWearable sensor assessment tools have proven to be reliable in measuring function in normal and impaired movement disorders during well-defined assessment protocols. While such assessments can provide valid and sensitive measures of upper limb activity in spinal cord injury (SCI), no assessment tool has yet been introduced into unsupervised daily recordings to complement clinical assessments during rehabilitation. The objective of this study was to measure the overall amount of upper-limb activity in subjects with acute SCI using wearable sensors and relate this to lesion characteristics, independence, and function.
View Article and Find Full Text PDFBackground: The effect of rehabilitative training after stroke is dose-dependent. Out-patient rehabilitation training is often limited by transport logistics, financial resources and a lack of motivation/compliance. We studied the feasibility of an unsupervised arm therapy for self-directed rehabilitation therapy in patients' homes.
View Article and Find Full Text PDFPhysical activity in wheelchair-bound individuals can be assessed by monitoring their mobility as this is one of the most intense upper extremity activities they perform. Current accelerometer-based approaches for describing wheelchair mobility do not distinguish between self- and attendant-propulsion and hence may overestimate total physical activity. The aim of this study was to develop and validate an inertial measurement unit based algorithm to monitor wheel kinematics and the type of wheelchair propulsion (self- or attendant-) within a "real-world" situation.
View Article and Find Full Text PDFAnatomical plasticity such as fibre growth and the formation of new connections in the cortex and spinal cord is one known mechanism mediating functional recovery after damage to the central nervous system. Little is known about anatomical plasticity in the brainstem, which contains key locomotor regions. We compared changes of the spinal projection pattern of the major descending systems following a cervical unilateral spinal cord hemisection in adult rats.
View Article and Find Full Text PDFFunctional recovery following central nervous system injuries is strongly influenced by rehabilitative training. In the clinical setting, the intensity of training and the level of motivation for a particular task are known to play important roles. With increasing neuroscience studies investigating the effects of training and rehabilitation, it is important to understand how the amount and type of training of individuals influences outcome.
View Article and Find Full Text PDFStroke is a common problem, and with an aging population, it is likely to become more so. Outcomes from stroke are wide ranging from death to complete recovery, but the majority result in severe motor impairments that affect quality of life and become a burden on health care systems, family, and friends. Therapeutically, removal of thromboses can greatly improve outcomes, but for many stroke sufferers, the only currently available therapy is rehabilitative training in which spared brain areas and fiber tracts are strengthened and trained to take over new functions.
View Article and Find Full Text PDFAdult Long Evans rats received a photothrombotic stroke that destroyed >90% of the sensorimotor cortex unilaterally; they were subsequently treated intrathecally for 2 weeks with a function blocking antibody against the neurite growth inhibitory central nervous system protein Nogo-A. Fine motor control of skilled forelimb grasping improved to 65% of intact baseline performance in the anti-Nogo-A treated rats, whereas control antibody treated animals recovered to only 20% of baseline scores. Bilateral retrograde tract tracing with two different tracers from the intact and the denervated side of the cervical spinal cord, at different time points post-lesion, indicated that the intact corticospinal tract had extensively sprouted across the midline into the denervated spinal hemicord.
View Article and Find Full Text PDFWhereas large injuries to the brain lead to considerable irreversible functional impairments, smaller strokes or traumatic lesions are often associated with good recovery. This recovery occurs spontaneously, and there is ample evidence from preclinical studies to suggest that adjacent undamaged areas (also known as peri-infarct regions) of the cortex 'take over' control of the disrupted functions. In rodents, sprouting of axons and dendrites has been observed in this region following stroke, while reduced inhibition from horizontal or callosal connections, or plastic changes in subcortical connections, could also occur.
View Article and Find Full Text PDFChondroitin sulphate proteoglycans (CSPGs) are extracellular matrix molecules whose inhibitory activity is attenuated by the enzyme chondroitinase ABC (ChABC). Here we assess whether CSPG degradation can promote compensatory sprouting of the intact corticospinal tract (CST) following unilateral injury and restore function to the denervated forelimb. Adult C57BL/6 mice underwent unilateral pyramidotomy and treatment with either ChABC or a vehicle control.
View Article and Find Full Text PDFBackground: Robotic and non-robotic training devices are increasingly being used in the rehabilitation of upper limb function in subjects with neurological disorders. As well as being used for training such devices can also provide ongoing assessments during the training sessions. Therefore, it is mandatory to understand the reliability and validity of such measurements when used in a clinical setting.
View Article and Find Full Text PDFCentral nervous system (CNS) disorders distinctly impair locomotor pattern generation and balance, but technical limitations prevent independent assessment and rehabilitation of these subfunctions. Here we introduce a versatile robotic interface to evaluate, enable and train pattern generation and balance independently during natural walking behaviors in rats. In evaluation mode, the robotic interface affords detailed assessments of pattern generation and dynamic equilibrium after spinal cord injury (SCI) and stroke.
View Article and Find Full Text PDFSpontaneous functional recovery following injury to the adult central nervous system can be enhanced with increased and focused activity, either through altered behaviour (skill learning, exercise or training) or by artificial stimulation (magnetic or electrical). In terms of training, the choice of paradigm plays a key role in the recovered behaviour. Here we show that task-specific training leads to improved forelimb function that can be translated to a novel forelimb task.
View Article and Find Full Text PDFA large thoracic spinal cord injury disconnects the hindlimb (HL) sensory-motor cortex from its target, the lumbar spinal cord. The fate of the synaptic structures of the axotomized cortical neurons is not well studied. We evaluated the density of spines on axotomized corticospinal neurons at 3, 7, and 21 days after the injury in adult mice expressing yellow fluorescence protein in a subset of layer 5 neurons.
View Article and Find Full Text PDF