Background: In vivo patch-clamp recording techniques provide access to the sub- and suprathreshold membrane potential dynamics of individual neurons during behavior. However, maintaining recording stability throughout behavior is a significant challenge, and while methods for head restraint are commonly used to enhance stability, behaviorally related brain movement relative to the skull can severely impact the success rate and duration of whole-cell patch-clamp recordings.
New Method: We developed a low-cost, biocompatible, and 3D-printable cranial implant capable of locally stabilizing brain movement, while permitting equivalent access to the brain when compared to a conventional craniotomy.