Background: We have previously shown that in pancreatic ductal adenocarcinoma (PDA) cells, the glycolytic enzyme alpha-enolase (ENO1) also acts as a plasminogen receptor and promotes invasion and metastasis formation. Moreover, ENO1 silencing in PDA cells induces oxidative stress, senescence and profoundly modifies PDA cell metabolism. Although anti-ENO1 antibody inhibits PDA cell migration and invasion, little is known about the role of ENO1 in regulating cell-cell and cell-matrix contacts.
View Article and Find Full Text PDFTo investigate novel colorectal cancer (CRC)-associated antigens that could be targets of humoral or cellular responses, we analyzed the reactivity of serum from a long-surviving CRC patient (for more than 100 months of follow-up) in clinical remission, by serologic proteome analysis. Two-dimensional Western blotting (2D-WB) and mass spectrometry analysis revealed a strong reactivity of this serum against protein disulfide isomerase A3 (PDIA3). Anti-PDIA3 antibodies are not a diagnostic marker of CRC, 2D-WB and Luminex analysis revealed that they were equally present in about 10% of sera from healthy subjects and CRC patients.
View Article and Find Full Text PDFIn the last 5 years, novel knowledge on tumor metabolism has been revealed with the identification of critical factors that fuel tumors. Alpha-enolase (ENO1) is commonly over-expressed in tumors and is a clinically relevant candidate molecular target for immunotherapy. Here, we silenced ENO1 in human cancer cell lines and evaluated its impact through proteomic, biochemical and functional approaches.
View Article and Find Full Text PDFPancreatic Ductal Adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by rapid progression, invasiveness and resistance to treatment. We have previously demonstrated that most PDAC patients have circulating antibodies against the glycolytic enzyme alpha-enolase (ENO1), which correlates with a better response to therapy and survival. ENO1 is a metabolic enzyme, also expressed on the cell surface where it acts as a plasminogen receptor.
View Article and Find Full Text PDF