Publications by authors named "Michelle Rooks"

Background: Patient-derived organoid (PDO) models offer potential to transform drug discovery for inflammatory bowel disease (IBD) but are limited by inconsistencies with differentiation and functional characterization. We profiled molecular and cellular features across a range of intestinal organoid models and examined differentiation and establishment of a functional epithelial barrier.

Methods: Patient-derived organoids or monolayers were generated from control or IBD patient-derived colon or ileum and were molecularly or functionally profiled.

View Article and Find Full Text PDF

Hosts and their microbes have established a sophisticated communication system over many millennia. Within mammalian hosts, this dynamic cross-talk is essential for maintaining intestinal homeostasis. In a genetically susceptible host, dysbiosis of the gut microbiome and dysregulated immune responses are central to the development of inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

The microbiota - the collection of microorganisms that live within and on all mammals - provides crucial signals for the development and function of the immune system. Increased availability of technologies that profile microbial communities is facilitating the entry of many immunologists into the evolving field of host-microbiota studies. The microbial communities, their metabolites and components are not only necessary for immune homeostasis, they also influence the susceptibility of the host to many immune-mediated diseases and disorders.

View Article and Find Full Text PDF

Dysregulated immune responses to gut microbes are central to inflammatory bowel disease (IBD), and gut microbial activity can fuel chronic inflammation. Examining how IBD-directed therapies influence gut microbiomes may identify microbial community features integral to mitigating disease and maintaining health. However, IBD patients often receive multiple treatments during disease flares, confounding such analyses.

View Article and Find Full Text PDF

Gut microbes are essential components of the human organism-helping us metabolize food into energy, produce micronutrients, and shape our immune systems. Having a particular pattern of gut microbes is also increasingly being linked to medical conditions including obesity, inflammatory bowel disease, and diabetes. Recent studies now indicate that our resident intestinal bacteria may also play a critical role in determining one's risk of developing cancer, ranging from protection against cancer to promoting its initiation and progression.

View Article and Find Full Text PDF

It is now possible to perform whole-genome shotgun sequencing as well as capture of specific genomic regions for extinct organisms. However, targeted resequencing of large parts of nuclear genomes has yet to be demonstrated for ancient DNA. Here we show that hybridization capture on microarrays can successfully recover more than a megabase of target regions from Neandertal DNA even in the presence of approximately 99.

View Article and Find Full Text PDF

Background: The classical candidate-gene approach has failed to identify novel breast cancer susceptibility genes. Nowadays, massive parallel sequencing technology allows the development of studies unaffordable a few years ago. However, analysis protocols are not yet sufficiently developed to extract all information from the huge amount of data obtained.

View Article and Find Full Text PDF

Next-generation sequencing technologies generate vast catalogs of short RNA sequences from which to mine microRNAs. However, such data must be vetted to appropriately categorize microRNA precursors and interpret their evolution. A recent study annotated hundreds of microRNAs in three species on the basis of singleton reads of heterogeneous length.

View Article and Find Full Text PDF

DNA methylation stabilizes developmentally programmed gene expression states. Aberrant methylation is associated with disease progression and is a common feature of cancer genomes. Presently, few methods enable quantitative, large-scale, single-base resolution mapping of DNA methylation states in desired regions of a complex mammalian genome.

View Article and Find Full Text PDF

Complementary techniques that deepen information content and minimize reagent costs are required to realize the full potential of massively parallel sequencing. Here, we describe a resequencing approach that directs focus to genomic regions of high interest by combining hybridization-based purification of multi-megabase regions with sequencing on the Illumina Genome Analyzer (GA). The capture matrix is created by a microarray on which probes can be programmed as desired to target any non-repeat portion of the genome, while the method requires only a basic familiarity with microarray hybridization.

View Article and Find Full Text PDF

Next-generation sequencers have sufficient power to analyze simultaneously DNAs from many different specimens, a practice known as multiplexing. Such schemes rely on the ability to associate each sequence read with the specimen from which it was derived. The current practice of appending molecular barcodes prior to pooling is practical for parallel analysis of up to many dozen samples.

View Article and Find Full Text PDF