The oxygen evolution reaction (OER) is a key reaction in the production of green hydrogen by water electrolysis. In alkaline media, the current state of the art catalysts used for the OER are based on non-noble metal oxides. However, despite their huge potential as OER catalysts, these materials exhibit various disadvantages including lack of stability and conductivity that hinder the wide-spread utilization of these materials in alkaline electrolyzer devices.
View Article and Find Full Text PDFIdentifying the active site of catalysts for the oxygen evolution reaction (OER) is critical for the design of electrode materials that will outperform the current, expensive state-of-the-art catalyst, RuO. Previous work shows that mixed Mn/Ru oxides show comparable performances in the OER, while reducing reliance on this expensive and scarce Pt-group metal. Herein, X-ray photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) are performed on mixed Mn/Ru oxide materials for the OER to understand structural and chemical changes at both metal sites during oxygen evolution.
View Article and Find Full Text PDFNickel-iron layered double hydroxides are known to be one of the most highly active catalysts for the oxygen evolution reaction in alkaline conditions. The high electrocatalytic activity of the material however cannot be sustained within the active voltage window on timescales consistent with commercial requirements. The goal of this work is to identify and prove the source of inherent catalyst instability by tracking changes in the material during OER activity.
View Article and Find Full Text PDFVery recently, it has been reported that mixed transition metal oxide (TMO)/MXene catalysts show improved performance over TMO only catalysts for the oxygen evolution reaction (OER). However, the reasoning behind this observation is unknown. In this work mixed Co(OH)/TiCT were prepared and characterized for the OER using ex situ and operando spectroscopy techniques in order to initiate the understanding of why mixed TMO/MXene materials show better performances compared to TMO only catalysts.
View Article and Find Full Text PDFThe synthesis of transition metal dichalcogenides (TMDs) has been a primary focus for 2D nanomaterial research over the last 10 years, however, only a small fraction of this research has been concentrated on transition metal ditellurides. In particular, nanoscale platinum ditelluride (PtTe) has rarely been investigated, despite its potential applications in catalysis, photonics and spintronics. Of the reports published, the majority examine mechanically-exfoliated flakes from chemical vapor transport (CVT) grown crystals.
View Article and Find Full Text PDFAdditive manufacturing (also known as three-dimensional (3D) printing) is being extensively utilized in many areas of electrochemistry to produce electrodes and devices, as this technique allows for fast prototyping and is relatively low cost. Furthermore, there is a variety of 3D-printing technologies available, which include fused deposition modeling (FDM), inkjet printing, select laser melting (SLM), and stereolithography (SLA), making additive manufacturing a highly desirable technique for electrochemical purposes. In particular, over the last number of years, a significant amount of research into using 3D printing to create electrodes/devices for electrochemical energy conversion and storage has emerged.
View Article and Find Full Text PDFLight-driven micro/nanomotors represent the next generation of automotive devices that can be easily actuated and controlled by using an external light source. As the field evolves, there is a need for developing more sophisticated micromachines that can fulfill diverse tasks in complex environments. Herein, we introduce single-component BiVO micromotors with well-defined micro/nanostructures that can swim both individually and as collectively assembled entities under visible-light irradiation.
View Article and Find Full Text PDFHerein, for the first time, we report on the presence of metal impurities in a widely reported and commercially available graphene/polylactic acid (PLA) 3D-printing filament and discuss the influence of these impurities on the electrochemical properties of as-printed and modified electrodes with said filament. Our findings show that the graphene component of this commercial filament contains Fe, Ti and Al impurities.
View Article and Find Full Text PDFThree-dimensional (3D) printing technologies are emerging as an important tool for the manufacturing of electrodes for various electrochemistry applications. It has been previously shown that metal 3D electrodes, modified with metal oxides, are excellent catalysts for various electrochemical energy and sensing applications. However, the metal 3D printing process, also known as selective laser melting, is extremely costly.
View Article and Find Full Text PDFThis paper describes the wet-chemistry synthesis of highly crystalline hexagonal flakes of Ni-Fe layered double hydroxide (LDH) produced at temperature as low as 100 °C. The flakes with diameter in the range of 0.5-1.
View Article and Find Full Text PDF