Recurrent GLI1 gene fusions have been recently described in a subset of soft tissue tumors showing a distinct monotonous epithelioid morphology with a rich capillary network and frequent S100 protein expression. Three different fusion partners-ACTB, MALAT1, and PTCH1-have been reported with the PTCH1-GLI1 fusion from 2 patients only, both with head and neck tumors. Herein, we report for the first time a PTCH1-GLI1 fusion in a primary ovarian tumor from a female patient aged 54 years who presented with a 21-cm right ovarian mass and mesenteric metastasis.
View Article and Find Full Text PDFTumefactive demyelination mimics primary brain neoplasms on imaging, often necessitating brain biopsy. This article reviews the literature for the clinical and radiologic findings of tumefactive demyelination in various disease processes to facilitate identification of tumefactive demyelination on imaging. Both clinical and radiologic findings must be integrated to distinguish tumefactive demyelinating lesions from similarly appearing lesions on imaging.
View Article and Find Full Text PDFNo disease-modifying treatment exists for the fatal neurodegenerative polyglutamine disease known both as Machado-Joseph disease and spinocerebellar ataxia type 3. As a potential route to therapy, we identified small molecules that reduce levels of the mutant disease protein, ATXN3. Screens of a small molecule collection, including 1250 Food and Drug Administration-approved drugs, in a novel cell-based assay, followed by secondary screens in brain slice cultures from transgenic mice expressing the human disease gene, identified the atypical antipsychotic aripiprazole as one of the hits.
View Article and Find Full Text PDFAtaxin-3 is a deubiquitinase and polyglutamine (polyQ) disease protein with a protective role in Drosophila melanogaster models of neurodegeneration. In the fruit fly, wild-type ataxin-3 suppresses toxicity from several polyQ disease proteins, including a pathogenic version of itself that causes spinocerebellar ataxia type 3 and pathogenic huntingtin, which causes Huntington's disease. The molecular partners of ataxin-3 in this protective function are unclear.
View Article and Find Full Text PDFSpinocerebellar ataxia type 6 (SCA6) belongs to the family of CAG/polyglutamine (polyQ)-dependent neurodegenerative disorders. SCA6 is caused by abnormal expansion in a CAG trinucleotide repeat within exon 47 of CACNA1A, a bicistronic gene that encodes α1A, a P/Q-type calcium channel subunit and a C-terminal protein, termed α1ACT. Expansion of the CAG/polyQ region of CACNA1A occurs within α1ACT and leads to ataxia.
View Article and Find Full Text PDFPolyglutamine repeat expansion in ataxin-3 causes neurodegeneration in the most common dominant ataxia, spinocerebellar ataxia type 3 (SCA3). Since reducing levels of disease proteins improves pathology in animals, we investigated how ataxin-3 is degraded. Here we show that, unlike most proteins, ataxin-3 turnover does not require its ubiquitination, but is regulated by ubiquitin-binding site 2 (UbS2) on its N terminus.
View Article and Find Full Text PDFDeubiquitinases (DUBs) are proteases that regulate various cellular processes by controlling protein ubiquitination. Cell-based studies indicate that the regulation of the activity of DUBs is important for homeostasis and is achieved by multiple mechanisms, including through their own ubiquitination. However, the physiological significance of the ubiquitination of DUBs to their functions in vivo is unclear.
View Article and Find Full Text PDFMachado-Joseph disease (MJD) is a dominantly inherited ataxia caused by a polyglutamine-coding expansion in the ATXN3 gene. Suppressing expression of the toxic gene product represents a promising approach to therapy for MJD and other polyglutamine diseases. We performed an extended therapeutic trial of RNA interference (RNAi) targeting ATXN3 in a mouse model expressing the full human disease gene and recapitulating key disease features.
View Article and Find Full Text PDF