Publications by authors named "Michelle Oppenheimer"

UDP-galactopyranose mutase (UGM) plays an essential role in galactofuranose biosynthesis in microorganisms by catalyzing the conversion of UDP-galactopyranose to UDP-galactofuranose. The enzyme has gained attention recently as a promising target for the design of new antifungal, antitrypanosomal, and antileishmanial agents. Here we report the first crystal structure of UGM complexed with its redox partner NAD(P)H.

View Article and Find Full Text PDF

Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite.

View Article and Find Full Text PDF

Aspergillus fumigatus siderophore A (Af SidA) is a flavin-dependent monooxygenase that catalyzes the hydroxylation of ornithine, producing N(5)-hydroxyornithine. This is the first step in the biosynthesis of hydroxamate-containing siderophores in A. fumigatus.

View Article and Find Full Text PDF

UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, the precursor of galactofuranose (Galf). Galf is found in several pathogenic organisms, including the parasite Trypanosoma cruzi, the causative agent of Chagas' disease. Galf) is important for virulence and is not present in humans, making its biosynthetic pathway an attractive target for the development of new drugs against T.

View Article and Find Full Text PDF

UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, which is a central reaction in galactofuranose biosynthesis. Galactofuranose has never been found in humans but is an essential building block of the cell wall and extracellular matrix of many bacteria, fungi, and protozoa. The importance of UGM for the viability of many pathogens and its absence in humans make UGM a potential drug target.

View Article and Find Full Text PDF

Aspergillus fumigatus is an opportunistic human pathogenic fungus responsible for deadly lung infections in immunocompromised individuals. Galactofuranose (Galf) residues are essential components of the cell wall and play an important role in A. fumigatus virulence.

View Article and Find Full Text PDF

Cell surface proteins of parasites play a role in pathogenesis by modulating mammalian cell recognition and cell adhesion during infection. β-Galactofuranose (Galf) is an important component of glycoproteins and glycolipids found on the cell surface of Leishmania spp. and Trypanosoma cruzi.

View Article and Find Full Text PDF

Human parasitic pathogens of the genus Leishmania are the causative agents of cutaneous, mucocutaneous, and visceral leishmaniasis. Currently, there are millions of people infected with these diseases and over 50,000 deaths occur annually. Recently, it was shown that the flavin-dependent enzyme UDP-galactopyranose mutase (UGM) is a virulence factor in Leishmania major.

View Article and Find Full Text PDF

UDP-galactopyranose mutase (UGM) is a flavin-containing enzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, the precursor of galactofuranose, which is an important cell wall component in Aspergillus fumigatus and other pathogenic microbes. A. fumigatus UGM (AfUGM) was expressed in Escherichia coli and purified to homogeneity.

View Article and Find Full Text PDF

Tetrahydrofuran monooxygenase (Thm) catalyzes the NADH-and oxygen-dependent hydroxylation of tetrahydrofuran to 2-hydroxytetrahydrofuran. Thm is composed of a hydroxylase enzyme, a regulatory subunit, and an oxidoreductase named ThmD. ThmD was expressed in Escherichia coli as a fusion to maltose-binding protein (MBP) and isolated to homogeneity after removal of the MBP.

View Article and Find Full Text PDF