Am J Physiol Heart Circ Physiol
January 2025
Lower body negative pressure (LBNP) has been used for decades in humans to model arterial baroreceptor unloading and represents a powerful tool for evaluating cardiovascular responses to orthostatic challenge. However, LBNP studies in animals have been limited to conditions of anesthesia or sedation, where cardiovascular reflexes are altered. Given the consequent uncertainties, the usefulness of LBNP studies in these preclinical models has been severely hampered.
View Article and Find Full Text PDFUnlabelled: During heart failure, gene and protein expression profiles undergo extensive compensatory and pathological remodeling. We previously observed that fast skeletal myosin binding protein-C (fMyBP-C) is upregulated in diseased mouse hearts. While fMyBP-C shares significant homology with its cardiac paralog, cardiac myosin binding protein-C (cMyBP-C), there are key differences that may affect cardiac function.
View Article and Find Full Text PDFExamining kidney fibrosis is crucial for mechanistic understanding and developing targeted strategies against chronic kidney disease (CKD). Persistent fibroblast activation and tubular epithelial cell (TEC) injury are key CKD contributors. However, cellular and transcriptional landscapes of CKD and specific activated kidney fibroblast clusters remain elusive.
View Article and Find Full Text PDFExamining kidney fibrosis is crucial for mechanistic understanding and developing targeted strategies against chronic kidney disease (CKD). Persistent fibroblast activation and tubular epithelial cell (TEC) injury are key CKD contributors. However, cellular and transcriptional landscapes of CKD and specific activated kidney fibroblast clusters remain elusive.
View Article and Find Full Text PDFMyocardial ischemia/reperfusion (I/R) injury and the resulting cardiac remodeling is a common cause of heart failure. The RNA binding protein Human Antigen R (HuR) has been previously shown to reduce cardiac remodeling following both I/R and cardiac pressure overload, but the full extent of the HuR-dependent mechanisms within cells of the myocardium have yet to be elucidated. In this study, we applied a novel small molecule inhibitor of HuR to define the functional role of HuR in the acute response to I/R injury and gain a better understanding of the HuR-dependent mechanisms during post-ischemic myocardial remodeling.
View Article and Find Full Text PDFCardiac fibrosis is regulated by the activation and phenotypic switching of quiescent cardiac fibroblasts to active myofibroblasts, which have extracellular matrix (ECM) remodeling and contractile functions which play a central role in cardiac remodeling in response to injury. Here, we show that expression and activity of the RNA binding protein HuR is increased in cardiac fibroblasts upon transformation to an active myofibroblast. Pharmacological inhibition of HuR significantly blunts the TGFβ-dependent increase in ECM remodeling genes, total collagen secretion, in vitro scratch closure, and collagen gel contraction in isolated primary cardiac fibroblasts, suggesting a suppression of TGFβ-induced myofibroblast activation upon HuR inhibition.
View Article and Find Full Text PDFComplete vascular occlusion to distant tissue prior to an ischemic cardiac event can provide significant cardioprotection via remote ischemic preconditioning (RIPC). Despite understanding its mechanistic basis, its translation to clinical practice has been unsuccessful, likely secondary to the inherent impossibility of predicting (and therefore preconditioning) an ischemic event, as well as the discomfort that is associated with traditional, fully occlusive RIPC stimuli. Our laboratory has previously shown that non-occlusive banding (NOB) via wrapping of a leather band (similar to a traditional Jewish ritual) can elicit an RIPC response in healthy human subjects.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
July 2021
Adipose tissue homeostasis plays a central role in cardiovascular physiology, and the presence of thermogenically active brown adipose tissue (BAT) has recently been associated with cardiometabolic health. We have previously shown that adipose tissue-specific deletion of HuR (Adipo-HuR) reduces BAT-mediated adaptive thermogenesis, and the goal of this work was to identify the cardiovascular impacts of Adipo-HuR. We found that Adipo-HuR mice exhibit a hypercontractile phenotype that is accompanied by increased left ventricle wall thickness and hypertrophic gene expression.
View Article and Find Full Text PDFBackground Myocardial infarction results in a large-scale cardiomyocyte loss and heart failure due to subsequent pathological remodeling. Whereas zebrafish and neonatal mice have evident cardiomyocyte expansion following injury, adult mammalian cardiomyocytes are principally nonproliferative. Despite historical presumptions of stem cell-mediated cardiac regeneration, numerous recent studies using advanced lineage-tracing methods demonstrated that the only source of cardiomyocyte renewal originates from the extant myocardium; thus, the augmented proliferation of preexisting adult cardiomyocytes remains a leading therapeutic approach toward cardiac regeneration.
View Article and Find Full Text PDFCardiac myosin binding protein-C (cMyBP-C) phosphorylation is essential for normal heart function and protects the heart from ischemia-reperfusion (I/R) injury. It is known that protein kinase-A (PKA)-mediated phosphorylation of cMyBP-C prevents I/R-dependent proteolysis, whereas dephosphorylation of cMyBP-C at PKA sites correlates with its degradation. While sites on cMyBP-C associated with phosphorylation and proteolysis co-localize, the mechanisms that link cMyBP-C phosphorylation and proteolysis during cardioprotection are not well understood.
View Article and Find Full Text PDFRNA binding proteins represent an emerging class of proteins with a role in cardiac dysfunction. We show that activation of the RNA binding protein human antigen R (HuR) is increased in the failing human heart. To determine the functional role of HuR in pathological cardiac hypertrophy, we created an inducible cardiomyocyte-specific HuR-deletion mouse and showed that HuR deletion reduces left ventricular hypertrophy, dilation, and fibrosis while preserving cardiac function in a transverse aortic constriction (TAC) model of pressure overload-induced hypertrophy.
View Article and Find Full Text PDFTranilast is clinically indicated for the treatment of allergic disorders and is also a nonselective blocker of the transient receptor potential vanilloid 2 (TRPV2) channel. Previous studies have found that it has protective effects in various animal models of cardiac disease. Our laboratory has found that genetic deletion of TRPV2 results in a blunted hypertrophic response to increased afterload; thus, this study tested the hypothesis that tranilast through cardiomyocyte TRPV2 blockade can inhibit the hypertrophic response to pressure overload in vivo through transverse aortic constriction and ex vivo through isolated myocyte studies.
View Article and Find Full Text PDFBackground: Fibronectin (FN) polymerization is necessary for collagen matrix deposition and is a key contributor to increased abundance of cardiac myofibroblasts (MFs) after cardiac injury. We hypothesized that interfering with FN polymerization or its genetic ablation in fibroblasts would attenuate MF and fibrosis and improve cardiac function after ischemia/reperfusion (I/R) injury.
Methods: Mouse and human MFs were used to assess the impact of the FN polymerization inhibitor (pUR4) in attenuating pathological cellular features such as proliferation, migration, extracellular matrix deposition, and associated mechanisms.
Background: Cardiac fibroblasts are a critical cell population responsible for myocardial extracellular matrix homeostasis. Upon injury or pathological stimulation, these cells transform to an activated myofibroblast state and play a fundamental role in myocardial fibrosis and remodeling. Chronic sympathetic overstimulation, a hallmark of heart failure (HF), induces pathological signaling through G protein βγ (Gβγ) subunits and their interaction with G protein-coupled receptor kinase 2 (GRK2).
View Article and Find Full Text PDFThiazide derivatives including Hydrochlorothiazide (HCTZ) represent the most common treatment of mild to moderate hypertension. Thiazides initially enhance diuresis via inhibition of the kidney Na+-Cl- Cotransporter (NCC). However, chronic volume depletion and diuresis are minimal while lowered blood pressure (BP) is maintained on thiazides.
View Article and Find Full Text PDFObjective: Hypertension (increased afterload) results in cardiomyocyte hypertrophy leading to left ventricular hypertrophy and subsequently, heart failure with preserved ejection fraction. This study was performed to test the hypothesis that transient receptor potential vanilloid 2 subtype (TRPV2) function regulates hypertrophy under increased afterload conditions.
Methods: We used functional (pore specific) TRPV2 knockout mice to evaluate the effects of increased afterload-induced stretch on cardiac size and function via transverse aortic constriction (TAC) as well as hypertrophic stimuli including adrenergic and angiotensin stimulation via subcutaneous pumps.
MicroRNAs (miRNAs) have been extensively examined in pathological cardiac hypertrophy. However, few studies focused on profiling the miRNA alterations in physiological hypertrophic hearts. In this study we generated a transgenic mouse model with cardiac-specific overexpression of miR-223.
View Article and Find Full Text PDFNull mutations in one copy of ATP2A2, the gene encoding sarco/endoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2), cause Darier disease in humans, a skin condition involving keratinocytes. Cardiac function appears to be unimpaired in Darier disease patients, with no evidence that SERCA2 haploinsufficiency itself causes heart disease. However, SERCA2 deficiency is widely considered a contributing factor in heart failure.
View Article and Find Full Text PDFThe mechanisms linking the expression of sarcomeric mutant proteins to the development of pathological hypertrophy in hypertrophic cardiomyopathy (HCM) remain poorly understood. We investigated the role of the plasma membrane Ca(2+)-ATPase PMCA4 in the HCM phenotype using a transgenic model that expresses mutant (Glu180Gly) α-tropomyosin (Tm180) in heart. Immunoblot analysis revealed that cardiac PMCA4 expression was upregulated early in Tm180 disease pathogenesis.
View Article and Find Full Text PDFPrevious studies have demonstrated improvement of cardiac function occurs with acute consumption of a high-fat diet (HFD) after myocardial infarction (MI). However, no data exist addressing the effects of acute HFD upon the extent of injury after MI. This study investigates the hypothesis that short-term HFD, prior to infarction, protects the heart against ischemia-reperfusion (I/R) injury through NF-κB-dependent regulation of cell death pathways in the heart.
View Article and Find Full Text PDFCl(-)/HCO(-) 3 exchangers are expressed abundantly in cardiac muscle, suggesting that HCO(-) 3 extrusion serves an important function in heart. Mice lacking Anion Exchanger Isoform 3 (AE3), a major cardiac Cl(-)/HCO(-) 3 exchanger, appear healthy, but loss of AE3 causes decompensation in a hypertrophic cardiomyopathy (HCM) model. Using intra-ventricular pressure analysis, in vivo pacing, and molecular studies we identified physiological and biochemical changes caused by loss of AE3 that may contribute to decompensation in HCM.
View Article and Find Full Text PDFAcute inhibition of the NHE1 Na(+)/H(+) exchanger protects against ischemia-reperfusion injury and chronic inhibition attenuates development of cardiac hypertrophy and failure. To determine the cardiac effects of chronic inhibition of NHE1 under non-pathological conditions we used NHE1-null mice as a model of long-term NHE1 inhibition. Cardiovascular performance was relatively normal in Nhe1(-/-) mice although cardiac contractility and relaxation were slightly improved in mutant mice of the FVB/N background.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
April 2013
The α2-isoform of the Na,K-ATPase (α2) is the minor isoform of the Na,K-ATPase expressed in the cardiovascular system and is thought to play a critical role in the regulation of cardiovascular hemodynamics. However, the organ system/cell type expressing α2 that is required for this regulation has not been fully defined. The present study uses a heart-specific knockout of α2 to further define the tissue-specific role of α2 in the regulation of cardiovascular hemodynamics.
View Article and Find Full Text PDFThe α(2)-isoform of Na,K-ATPase (α(2)) is thought to play a role in blood pressure regulation, but the specific cell type(s) involved have not been identified. Therefore, it is important to study the role of the α(2) in individual cell types in the cardiovascular system. The present study demonstrates the role of vascular smooth muscle α(2) in the regulation of cardiovascular hemodynamics.
View Article and Find Full Text PDF