Realistic descriptions of interfacial contact between rough, deformable surfaces under load are difficult to obtain; however, this contact is of great import in a wide range of applications. Here, we detail, through experiment and computational simulation, the interfacial contact between four common traps and five commonly investigated surfaces encountered in explosives detection applications associated with airport security. The Young's modulus and hardness of four traps and seven substrates were measured using nanoindentation.
View Article and Find Full Text PDFIt is of increasing importance to understand how explosive particles adhere to surfaces in order to understand how to remove them for detection in airport or other security settings. In this study, adhesion forces between royal demolition explosive (cyclotrimethylenetrinitramine) (RDX), pentaerythritol tetranitrate (PETN), and trinitrotoluene (TNT) in their crystalline forms and aluminum coupons with three finishes, acrylic melamine (clear coating), polyester acrylic melamine (white coating) automotive finishes, and a green military-grade finish, were measured and modeled. The force measurements were performed using the atomic force microscopy (AFM)-based colloidal probe microscopy (CPM) method.
View Article and Find Full Text PDF