Unlike native polycyclic aromatic hydrocarbons (PAHs), quantitation of substituted polycyclic aromatic compounds (PACs) has been a challenge in the environmental industry. The challenge can be attributed in part to the large number of theoretically possible isomers and the lack of authentic standards for quantitation. In addition, the lack of a unified approach to the quantitation of these compounds has led to poor interlaboratory accuracy.
View Article and Find Full Text PDFA comprehensive, sensitive and high-throughput liquid chromatography-atmospheric pressure photoionization tandem mass spectrometry (LC-APPI-MS/MS) method has been developed for analysis of 36 halogenated flame retardants (HFRs). Under the optimized LC conditions, all of the HFRs eluted from the LC column within 14min, while maintaining good chromatographic separation for the isomers. Introduction of the pre-heated dopant to the APPI source decreased the background noise fivefold, which enhanced sensitivity.
View Article and Find Full Text PDFUntil recently, atmospheric pressure photoionization (APPI) has typically been used for the determination of non-polar halogenated flame retardants (HFRs) by liquid chromatography (LC) tandem mass spectrometry. In this study, we demonstrated the feasibility of utilizing liquid chromatography atmospheric pressure chemical ionization (APCI) tandem mass spectrometry (LC-APCI-MS/MS) for analysis of 38 HFRs. This developed method offered three advantages: simplicity, rapidity, and high sensitivity.
View Article and Find Full Text PDF