Linezolid is a drug with proven human antitubercular activity whose use is limited to highly drug-resistant patients because of its toxicity. This toxicity is related to its mechanism of action─linezolid inhibits protein synthesis in both bacteria and eukaryotic mitochondria. A highly selective and potent series of oxazolidinones, bearing a 5-aminomethyl moiety (in place of the typical 5-acetamidomethyl moiety of linezolid), was identified.
View Article and Find Full Text PDFMagnesium plays an important role in infection with Mycobacterium tuberculosis ( Mtb) as a signal of the extracellular environment, as a cofactor for many enzymes, and as a structural element in important macromolecules. Raltegravir, an antiretroviral drug that inhibits HIV-1 integrase is known to derive its potency from selective sequestration of active-site magnesium ions in addition to binding to a hydrophobic pocket. In order to determine if essential Mtb-related phosphoryl transfers could be disrupted in a similar manner, a directed screen of known molecules with integrase inhibitor-like pharmacophores ( N-alkyl-5-hydroxypyrimidinone carboxamides) was performed.
View Article and Find Full Text PDFSevere malaria due to Plasmodium falciparum remains a significant global health threat. DXR, the second enzyme in the MEP pathway, plays an important role to synthesize building blocks for isoprenoids. This enzyme is a promising drug target for malaria due to its essentiality as well as its absence in humans.
View Article and Find Full Text PDF