The analytical performance of an enhanced surface area electrolyte insulator semiconductor (EIS) device was investigated for DNA sensor development. The work endeavored to advance EIS performance by monitoring the effect of DNA probe layers have on the impedimetric signal during target hybridisation detection. Two universally employed covalent chemistries, direct and spacer-mediated attachment of amino modified probe molecules to amino-functionalised surfaces were investigated.
View Article and Find Full Text PDFThe aim of this work was to develop an integrated solution to DNA hybridisation monitoring for diagnostics on a monolithic silicon platform. A fabrication process was developed incorporating a gold initiation electrode patterned directly onto a PIN photodiode detector. Patterned interdigitated type electrodes exhibited the smallest reduction in photodiode sensitivity, therefore these were chosen as the ECL initiator design.
View Article and Find Full Text PDFAn investigation of the fabrication of microporous silicon (MPS) layers as a material for the development of an electrolyte insulator semiconductor (EIS) capacitance sensor has been performed. The goal was to create a high surface area substrate for the immobilisation of biorecognition elements. Structural analysis of MPS layers as a function of key etch parameters, namely implant type (p or n), implant dose, hydrofluoric acid (HF) etch concentration and current density has been performed using scanning electron microscopy (SEM).
View Article and Find Full Text PDFThe phlACBD genes responsible for the biosynthesis of the antifungal metabolite 2,4-diacetylphloroglucinol (PHL) by the biocontrol strain Pseudomonas fluorescens F113 are regulated at the transcriptional level by the pathway-specific repressor PhlF. Strong evidence suggests that this regulation occurs mainly in the early logarithmic phase of growth. First, the expression of the phlF gene is relatively high between 3 and 13 h of growth and relatively low thereafter, with the phlACBD operon following an opposite expression profile.
View Article and Find Full Text PDFThe antifungal metabolite 2,4-diacetylphloroglucinol plays a major role in the biocontrol capabilities of Pseudomonas fluorescens. The phloroglucinol biosynthetic locus of P. fluorescens F113 has been isolated previously.
View Article and Find Full Text PDF