Int J Radiat Oncol Biol Phys
January 2008
Purpose: Respiratory motion is a significant source of anatomic uncertainty in radiotherapy planning and can result in errors of portal size and the subsequent radiation dose. Although four-dimensional computed tomography allows for more accurate analysis of the respiratory cycle, breathing irregularities during data acquisition can cause considerable image distortions. The aim of this study was to examine the effect of respiratory irregularities on four-dimensional computed tomography, and to evaluate a novel image reconstruction algorithm using percentile-based tagging of the respiratory cycle.
View Article and Find Full Text PDFThe existing commercial software often inadequately determines respiratory peaks for patients in respiration correlated computed tomography. A semi-automatic method was developed for peak and valley detection in free-breathing respiratory waveforms. First the waveform is separated into breath cycles by identifying intercepts of a moving average curve with the inspiration and expiration branches of the waveform.
View Article and Find Full Text PDFPurpose: An accurate model of breathing motion under quiet respiration is desirable to obtain the most accurate and conformal dose distributions for mobile lung cancer lesions. On the basis of recent lung motion measurements and the physiologic functioning of the lungs, we have determined that the motion of lung and lung tumor tissues can be modeled as a function of five degrees of freedom, the position of the tissues at a user-specified reference breathing phase, tidal volume and its temporal derivative airflow (tidal volume phase space). Time is an implicit variable in this model.
View Article and Find Full Text PDFAn important consideration in four-dimensional CT scanning is the selection of a breathing metric for sorting the CT data and modeling internal motion. This study compared two noninvasive breathing metrics, spirometry and abdominal height, against internal air content, used as a surrogate for internal motion. Both metrics were shown to be accurate, but the spirometry showed a stronger and more reproducible relationship than the abdominal height in the lung.
View Article and Find Full Text PDFAn important consideration in four-dimensional CT scanning is the selection of a breathing metric for sorting the CT data and modeling internal motion. This study compared two noninvasive breathing metrics, spirometry and abdominal height, against internal air content, used as a surrogate for internal motion. Both metrics were shown to be accurate, but the spirometry showed a stronger and more reproducible relationship than the abdominal height in the lung.
View Article and Find Full Text PDFWe have developed a four-dimensional computed tomography (4D CT) technique for mapping breathing motion in radiotherapy treatment planning. A multislice CT scanner (1.5 mm slices) operated in ciné mode was used to acquire 12 contiguous slices in each couch position for 15 consecutive scans (0.
View Article and Find Full Text PDF