Background & Aims: The incidence of Crohn's disease (CD) continues to increase worldwide. The contribution of CD4 cell populations remains to be elucidated. We aimed to provide an in-depth transcriptional assessment of CD4 T cells driving chronic inflammation in CD.
View Article and Find Full Text PDFFOXP3+ Tregs are expanded within the inflamed intestine of human Crohn's disease, yet FOXP3-mediated gene repression within these cells is lost. The polycomb repressive complexes play a role in FOXP3 target gene regulation, but deeper mechanistic insight is incomplete. We have now specifically identified the polycomb-repressive complex 1 (PRC1) family member, BMI1 in the regulation of a proinflammatory enhancer network in both human and murine Tregs.
View Article and Find Full Text PDFT cell lineage decisions are critical for the development of proper immune responses to pathogens as well as important for the resolution of inflammatory responses. This differentiation process relies on a combination of intrinsic and extrinsic factors converging upon epigenetic regulation of transcriptional networks relevant to specific T cell lineages. As these biochemical modifications represent therapeutic opportunities in cancer biology and autoimmunity, implications of writers and readers of epigenetic marks to immune cell differentiation and function are highly relevant.
View Article and Find Full Text PDFRegulatory T (Treg) cells expressing the transcription factor FOXP3 play a pivotal role in maintaining immunologic self-tolerance. We and others have shown previously that EZH2 is recruited to the FOXP3 promoter and its targets in Treg cells. To further address the role for EZH2 in Treg cellular function, we have now generated mice that lack EZH2 specifically in Treg cells (EZH2FOXP3).
View Article and Find Full Text PDF