Numerous studies have shown that prior visual experiences play an important role in sensory processing and adapting behavior in a dynamic environment. A repeated and passive presentation of visual stimulus is one of the simplest procedures to manipulate acquired experiences. Using this approach, we aimed to investigate exposure-based visual learning of aging zebrafish and how cholinergic intervention is involved in exposure-induced changes.
View Article and Find Full Text PDFGerontology
December 2023
Introduction: Interventions targeting cholinergic neurotransmission like acetylcholinesterase (AChE) inhibition distinguish potential mechanisms to delay age-related impairments and attenuate deficits related to neurodegenerative diseases. However, the chronic effects of these interventions are not well described.
Methods: In the current study, global levels of cholinergic, cellular, synaptic, and inflammation-mediating proteins were assessed within the context of aging and chronic reduction of AChE activity.
Various aspects of visual functioning, including motion perception, change with age. Yet, there is a lack of comprehensive understanding of age-related alterations at different stages of motion processing and in each motion system. To understand the effects of aging on second-order motion processing, we investigated optomotor responses (OMR) in younger and older wild-type (AB-strain) and acetylcholinesterase (ache) mutant zebrafish.
View Article and Find Full Text PDFOverfeeding (OF) and obesity increase the risk for brain aging and neurodegenerative diseases due to increased oxidative stress and neuroinflammation, which likely contribute to cellular dysfunction. In contrast, caloric restriction (CR) is an intervention known for its effects on extending both life- and health-span. In the current study, the effects on the aging brain of two short-term feeding regimens, OF and CR, were investigated.
View Article and Find Full Text PDFTelomerase is reactivated in the majority of cancers. For instance, in gliomas, it is common that the TERT promoter is mutated. Research on telomere promoter GC islands have been focused primarily on proximal TERT promoter but little is known about the distal promoter.
View Article and Find Full Text PDFIncreased caloric intake (OF) impairs quality of life causing comorbidities with other diseases and cognitive deficits, whereas dietary restriction (DR) increases healthspan by preventing age-related deteriorations. To understand the effects of these opposing dietary regimens on the cellular and synaptic dynamics during brain aging, the zebrafish model, which shows gradual aging like mammals, was utilized. Global changes in cellular and synaptic markers with respect to age and a 12 week dietary regimen of OF and DR demonstrated that aging reduces the levels of the glutamate receptor subunits, GLUR2/3, inhibitory synaptic clustering protein, GEP, synaptic vesicle protein, SYP, and early-differentiated neuronal marker, HuC.
View Article and Find Full Text PDFProgression of cognitive decline with or without neurodegeneration varies among elderly subjects. The main aim of the current study was to illuminate the molecular mechanisms that promote and retain successful aging in the context of factors such as environment and gender, both of which alter the resilience of the aging brain. Environmental enrichment (EE) is one intervention that may lead to the maintenance of cognitive processing at older ages in both humans and animal subjects.
View Article and Find Full Text PDFAging is a significant risk factor for cognitive decline associated with neurodegenerative diseases, which makes understanding what promotes 'healthy brain aging' very important. Studies suggest that caloric restriction (CR) is a non-genetic intervention that reliably extends life- and healthspan. Here, we review the CR literature related to both the subject of aging and alterations in cell cycle machinery, especially surrounding the regulation of the E2F/DP1 complex, to elucidate the cellular protection mechanisms in the brain induced via dietary applications.
View Article and Find Full Text PDFUnderstanding the principles underlying age-related changes in motion perception is paramount for improving the quality of life and health of older adults. However, the mechanisms underlying age-related alterations in this aspect of vision, which is essential for survival in a dynamic world, still remain unclear. Using optomotor responses to drifting gratings, we investigated age-related changes in motion detection of adult zebrafish (wild-type/AB-strain and ache mutants with decreased levels of acetylcholinesterase).
View Article and Find Full Text PDFBrain aging is a complex process, which involves multiple pathways including various components from cellular to molecular. This study aimed to investigate the gene expression changes in zebrafish brains through young-adult to adult, and adult to old age. RNA sequencing was performed on isolated neuronal cells from zebrafish brains.
View Article and Find Full Text PDFRejuvenation Res
December 2020
Intermittent fasting (IF) and its mimetic, rapamycin extend lifespan and healthspan through mechanisms that are not fully understood. We investigated different short-term durations of IF and rapamycin on cellular and molecular changes in the brains of young (6-10 months) and old (26-31 months) zebrafish. Interestingly, our results showed that IF significantly lowered glucose levels while increasing DCAMKL1 in both young and old animals.
View Article and Find Full Text PDFAging occurs due to a combination of several factors, such as telomere attrition, cellular senescence, and stem cell exhaustion. The telomere attrition-dependent cellular senescence is regulated by increased levels of SMAD specific E3 ubiquitin protein ligase 2 (smurf2). With age smurf2 expression increases and Smurf2 protein interacts with several regulatory proteins including, Smad7, Ep300, Yy1, Sirt1, Mdm2, and Tp53, likely affecting its function related to cellular aging.
View Article and Find Full Text PDFAcetylcholinesterase (AChE), an enzyme responsible for degradation of acetylcholine, has been identified as a prognostic marker in liver cancer. Although in vivo Ache tumorigenicity assays in mouse are present, no established liver cancer xenograft model in zebrafish using an ache mutant background exists. Herein, we developed an embryonic zebrafish xenograft model using epithelial (Hep3B) and mesenchymal (SKHep1) liver cancer cell lines in wild-type and ache sibling mutant larvae after characterization of cholinesterase expression and activity in cell lines and zebrafish larvae.
View Article and Find Full Text PDFIn this study, we designed and developed a novel low-cost system for anesthetizing and injecting adult zebrafish. The system utilizes a gradual cooling method for the anesthesia and maintains the fish in a stable anesthetic plane, as well as stabilizes the animal so that intraperitoneal injections can be consistently performed. It is a system that any laboratory with access to a workshop can build for their group.
View Article and Find Full Text PDFThe zebrafish has become a popular model for studying normal brain aging due to its large fecundity, conserved genome, and available genetic tools; but little data exists about neurobiological age-related alterations. The current study tested the hypothesis of an association between brain aging and synaptic protein loss across males and females. Western blot analysis of synaptophysin (SYP), a presynaptic vesicle protein, and postsynaptic density-95 (PSD-95) and gephyrin (GEP), excitatory and inhibitory postsynaptic receptor-clustering proteins, respectively, was performed in young, middle-aged, and old male and female zebrafish (Danio rerio) brains.
View Article and Find Full Text PDFBrain aging is marked by a decline in cognitive abilities and associated with neurodegenerative disorders. Recent studies have shown, neurogenesis continues into adulthood but is known to be decreasing during advancing age and these changes may contribute to cognitive alterations. Advances, which aim to promote better aging are of paramount importance.
View Article and Find Full Text PDFBackground: WDR81 (WD repeat-containing protein 81) is associated with cerebellar ataxia, mental retardation and disequilibrium syndrome (CAMRQ2, [MIM 610185]). Human and mouse studies suggest that it might be a gene of importance during neurodevelopment. This study aimed at fully characterizing the structure of the wdr81 transcript, detecting the possible transcript variants and revealing its expression profile in zebrafish, a powerful model organism for studying development and disease.
View Article and Find Full Text PDFBackground: Brain aging is a multi-factorial process due to both genetic and environmental factors. The zebrafish has recently become a popular model organism for examining aging and age-related diseases because as in humans they age gradually and exhibit cognitive decline. Few studies have examined the biological changes in the aging brain that may contribute to these declines and none have examined them within individuals with respect to gender.
View Article and Find Full Text PDFBrain aging is a multifactorial process that is occurring across multiple cognitive domains. A significant complaint that occurs in the elderly is a decrement in learning and memory ability. Both rodents and zebrafish exhibit a similar problem with memory during aging.
View Article and Find Full Text PDFQS-21 is a potent immunostimulatory saponin that is currently under clinical investigation as an adjuvant in various vaccines to treat infectious diseases, cancers, and cognitive disorders. Herein, we report the design, synthesis, and preclinical evaluation of simplified QS-21 congeners to define key structural features that are critical for adjuvant activity. Truncation of the linear tetrasaccharide domain revealed that a trisaccharide variant is equipotent to QS-21, while the corresponding disaccharide and monosaccharide congeners are more toxic and less potent, respectively.
View Article and Find Full Text PDFIn rats, as in humans, normal aging is characterized by a decline in hippocampal-dependent learning and memory, as well as in glutamatergic function. Both growth hormone (GH) and insulin-like growth factor-I (IGF-I) levels have been reported to decrease with age, and treatment with either GH or IGF-I can ameliorate age-related cognitive decline. Interestingly, acute GH and IGF-I treatments enhance glutamatergic synaptic transmission in the rat hippocampus of juvenile animals.
View Article and Find Full Text PDFAlterations in the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPA-R) and N-methyl-D-aspartate receptor (NMDA-R) have been documented in aged animals and may contribute to changes in hippocampal-dependent memory. Growth hormone (GH) regulates AMPA-R and NMDA-R-dependent excitatory transmission and decreases with age. Chronic GH treatment mitigates age-related cognitive decline.
View Article and Find Full Text PDFUsing fluorescent indicators and several serum albumins, a sensing system for fatty acids was developed. Fatty acids were able to be differentiated based on their carbon chain length and degree of unsaturation. A sensing ensemble was then applied to study complex mixtures of triglycerides, namely, edible oils.
View Article and Find Full Text PDFWe introduce a novel sensing mechanism for nitric oxide (NO) detection with a particular easily synthesized embodiment (NO(550)), which displays a rapid and linear response to NO with a red-shifted 1500-fold turn-on signal from a dark background. Excellent selectivity was observed against other reactive oxygen/nitrogen species, pH, and various substances that interfere with existing probes. NO(550) crosses cell membranes but not nuclear membranes and is suitable for both intra- and extracellular NO quantifications.
View Article and Find Full Text PDF