Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disorder that presents with telangiectases in skin and mucosae, and arteriovenous malformations (AVMs) in internal organs such as lungs, liver, and brain. Mutations in (endoglin), (ALK1), and (Smad4) genes account for over 95% of HHT. Localized telangiectases and AVMs are present in different organs, with frequencies which differ among affected individuals.
View Article and Find Full Text PDFOne of the mandates of the International Union of Immunological Societies (IUIS) is to promote immunological education to young scientists across the globe, including a large focus on those from low and low-to-middle income countries (LIC and LMIC). It strives to achieve this goal through the Education Committee (EDU), which is one of ten committees of the IUIS. To this end, EDU organizes three to four one-week courses per year in close cooperation with regional immunological societies and local organizers.
View Article and Find Full Text PDFPreeclampsia (PE), an hypertensive disorder of pregnancy, exhibits increased circulating levels of a short form of the auxillary TGF-beta (TGFB) receptor endoglin (sENG). Until now, its release and functionality in PE remains poorly understood. Here we show that ENG selectively interacts with sphingomyelin(SM)-18:0 which promotes its clustering with metalloproteinase 14 (MMP14) in SM-18:0 enriched lipid rafts of the apical syncytial membranes from PE placenta where ENG is cleaved by MMP14 into sENG.
View Article and Find Full Text PDFEndoglin (ENG)/CD105 is an essential endothelial cell co-receptor of the transforming growth factor β (TGF-β) superfamily, mutated in hereditary hemorrhagic telangiectasia type 1 (HHT1) and involved in tumor angiogenesis and preeclampsia. Here, we present crystal structures of the ectodomain of human ENG and its complex with the ligand bone morphogenetic protein 9 (BMP9). BMP9 interacts with a hydrophobic surface of the N-terminal orphan domain of ENG, which adopts a new duplicated fold generated by circular permutation.
View Article and Find Full Text PDFEndoglin (ENG) is a TGF-β superfamily coreceptor essential for vascular endothelium integrity. ENG mutations lead to a vascular dysplasia associated with frequent hemorrhages in multiple organs, whereas ENG null mouse embryos die at midgestation with impaired heart development and leaky vasculature. ENG interacts with several proteins involved in cell adhesion, and we postulated that it regulates vascular permeability.
View Article and Find Full Text PDFOxidative stress causes endothelial dysfunction and is implicated in the pathogenesis of cardiovascular diseases. Our studies suggested that reactive oxygen species (ROS) play a crucial role in hereditary hemorrhagic telangiectasia (HHT) disease, a vascular dysplasia affecting 1 in 5,000-8,000 people. Mutations in endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1) genes are responsible for HHT1 and HHT2 and are associated with arteriovenous malformations.
View Article and Find Full Text PDFHereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular dysplastic disorder, characterized by recurrent nosebleeds (epistaxis), multiple telangiectases and arteriovenous malformations (AVMs) in major organs. Mutations in Endoglin (ENG or CD105) and Activin receptor-like kinase 1 (ACVRL1 or ALK1) genes of the TGF-β superfamily receptors are responsible for HHT1 and HHT2 respectively and account for the majority of HHT cases. Haploinsufficiency in ENG and ALK1 is recognized at the underlying cause of HHT.
View Article and Find Full Text PDFSpeckle statistics of flowing scatterers have been well documented in the literature. Speckle variance optical coherence tomography exploits the large variance values of intensity changes in time caused mainly by the random backscattering of light resulting from translational activity of red blood cells to map out the microvascular networks. A method to map out the microvasculature malformation of skin based on the time-domain histograms of individual pixels is presented with results obtained from both normal skin and skin containing vascular malformation.
View Article and Find Full Text PDFEndoglin is a coreceptor of the TGF-β superfamily predominantly expressed on the vascular endothelium and selective subsets of immune cells. We previously demonstrated that Endoglin heterozygous (Eng (+/-)) mice subjected to dextran sulfate sodium (DSS) developed persistent gut inflammation and pathological angiogenesis. We now report that colitic Eng (+/-) mice have low colonic levels of active TGF-β1, which was associated with reduced expression of thrombospondin-1, an angiostatic factor known to activate TGF-β1.
View Article and Find Full Text PDFBackground: Right ventricular (RV) failure is a major cause of mortality worldwide and is often a consequence of RV pressure overload (RVPO). Endoglin is a coreceptor for the profibrogenic cytokine, transforming growth factor beta 1 (TGF-β1). TGF-β1 signaling by the canonical transient receptor protein channel 6 (TRPC-6) was recently reported to stimulate calcineurin-mediated myofibroblast transformation, a critical component of cardiac fibrosis.
View Article and Find Full Text PDFEpithelial ovarian cancer consists of multiple histotypes differing in etiology and clinical course. The most prevalent histotype is high-grade serous ovarian cancer (HGSOC), which often presents at an advanced stage frequently accompanied with high-volume ascites. While some studies suggest that ascites is associated with poor clinical outcome, most reports have not differentiated between histological subtypes or tumor grade.
View Article and Find Full Text PDFChronic intestinal inflammation is associated with pathological angiogenesis that further amplifies the inflammatory response. Vascular endothelial growth factor (VEGF), is a major angiogenic cytokine that has been implicated in chronic colitis and inflammatory bowel diseases. Endoglin (CD105), a transforming growth factor-β superfamily co-receptor expressed on endothelial and some myeloid cells, is a modulator of angiogenesis involved in wound healing and potentially in resolution of inflammation.
View Article and Find Full Text PDFENDOGLIN (ENG) is a co-receptor for transforming growth factor-β (TGF-β) family members that is highly expressed in endothelial cells and has a critical function in the development of the vascular system. Mutations in Eng are associated with the vascular disease known as hereditary hemorrhagic telangiectasia type l. Using mouse embryonic stem cells we observed that angiogenic factors, including vascular endothelial growth factor (VEGF), induce vasculogenesis in embryoid bodies even when Eng deficient cells or cells depleted of Eng using shRNA are used.
View Article and Find Full Text PDFEndoglin and activin receptor-like kinase 1 are specialized transforming growth factor-beta (TGF-β) superfamily receptors, primarily expressed in endothelial cells. Mutations in the corresponding ENG or ACVRL1 genes lead to hereditary hemorrhagic telangiectasia (HHT1 and HHT2 respectively). To discover proteins interacting with endoglin, ACVRL1 and TGF-β receptor type 2 and involved in TGF-β signaling, we applied LUMIER, a high-throughput mammalian interactome mapping technology.
View Article and Find Full Text PDFHereditary hemorrhagic telangiectasia (HHT) is a vascular dysplasia associated with dysregulated angiogenesis and arteriovascular malformations. The disease is caused by mutations in endoglin (ENG; HHT1) or activin receptor-like kinase 1 (ALK1; HHT2) genes, coding for transforming growth factor β (TGF-β) superfamily receptors. Vascular endothelial growth factor (VEGF) has been implicated in HHT and beneficial effects of anti-VEGF treatment were recently reported in HHT patients.
View Article and Find Full Text PDFBleomycin-induced lung injury is characterized in the neonatal rat by inflammation dominated by neutrophils and macrophages, inhibited distal airway and vascular development, and pulmonary hypertension, similar to human infants with severe bronchopulmonary dysplasia. Rho-kinase (ROCK) is known to mediate lung injury in adult animals via stimulatory effects on inflammation. We therefore hypothesized that inhibition of ROCK may ameliorate bleomycin-induced lung injury in the neonatal rat.
View Article and Find Full Text PDFEndoglin (Eng) is a transmembrane glycoprotein that is mainly expressed in endothelial cells, but it is also present in the epidermis and skin appendages. To address the role of Eng in cutaneous wound healing, we compared the kinetics of reepithelialization in Eng heterozygous null (Eng(+/-)) mice and their normal littermates (Eng(+/+)) following skin wounds. The wound area was significantly larger in Eng(+/-) than in Eng(+/+) mice from 2 to 8 days after injury; overall wound closure was delayed by 1 to 2 days.
View Article and Find Full Text PDFEndoglin (CD105) is a type III auxiliary receptor for the transforming growth factor beta (TGFβ) superfamily. Several lines of evidence suggest that endoglin plays a critical role in maintaining cardiovascular homeostasis. Seemingly disparate disease conditions, including hereditary hemorrhagic telangiectasia, pre-eclampsia, and cardiac fibrosis, have now been associated with endoglin.
View Article and Find Full Text PDFHereditary hemorrhagic telangiectasia (HHT) is a vascular dysplasia caused by mutations in endoglin (ENG; HHT1) or activin receptor-like kinase (ALK1; HHT2) genes, coding for transforming growth factor-β (TGF-β) superfamily receptors. We demonstrated previously that endoglin and ALK1 interact with endothelial NO synthase (eNOS) and affect its activation. Endothelial cells deficient in endoglin or ALK1 proteins show eNOS uncoupling, reduced NO, and increased reactive oxygen species (ROS) production.
View Article and Find Full Text PDFMuch remains unknown about the signals that induce early mesoderm to initiate hematopoietic differentiation. Here, we show that endoglin (Eng), a receptor for the TGFβ superfamily, identifies all cells with hematopoietic fate in the early embryo. These arise in an Eng(+)Flk1(+) mesodermal precursor population at embryonic day 7.
View Article and Find Full Text PDFAims: Mutations in the ALK1 gene, coding for an endothelial-specific receptor of the transforming growth factor-β superfamily, are the underlying cause of hereditary haemorrhagic telangiectasia type 2, but are also associated with familial pulmonary hypertension (PH). We assessed the lung vasculature of mice with a heterozygous deletion of Alk1 (Alk1(+/-)) for disease manifestations and levels of reactive O(2) species (ROS) implicated in both disorders.
Methods And Results: Several signs of PH, including elevated right ventricular (RV) systolic pressure leading to RV hypertrophy, reduced vascular density, and increased thickness and outward remodelling of pulmonary arterioles, were observed in 8- to 18-week-old Alk1(+/-) mice relative to wild-type littermate controls.
High-flow hepatic vascular anomalies with arteriovenous shunting commonly manifest during the neonatal period with signs and symptoms of congestive heart failure, but to our knowledge, they have never been described in patients with hereditary hemorrhagic telangiectasia (HHT). We report here our experience with 3 patients with hepatic arteriovenous malformations (AVMs) who presented with symptoms of high-output congestive heart failure during the neonatal period and were subsequently diagnosed with HHT. Imaging showed large hypervascular lesions and multiple hepatic arteriovenous shunts that differentiated these lesions from liver hemangiomas.
View Article and Find Full Text PDFBackground: Pathological angiogenesis is an intrinsic component of chronic intestinal inflammation, which results in remodeling and expansion of the gut microvascular bed. Endoglin is essential for endothelial cell function and physiological angiogenesis. In this study we investigated its potential role in the regulation of inflammation by testing the response of Endoglin heterozygous (Eng(+/-)) mice to experimental colitis.
View Article and Find Full Text PDFObjective: Loss-of-function mutations in genes coding for transforming growth factor-beta/bone morphogenetic protein receptors and changes in nitric oxide(*) (NO(*)) bioavailability are associated with hereditary hemorrhagic telangiectasia and some forms of pulmonary arterial hypertension. How these abnormalities lead to seemingly disparate pulmonary pathologies remains unknown. Endoglin (Eng), a transforming growth factor-beta coreceptor, is mutated in hereditary hemorrhagic telangiectasia and involved in regulating endothelial NO(*) synthase (eNOS)-derived NO(*) production and oxidative stress.
View Article and Find Full Text PDF