Publications by authors named "Michelle La-Fevre Bernt"

Based on theoretical frameworks of scientist stereotypes, possible selves, and science identity, written assignments were developed to teach science content through biographies and research of counter-stereotypical scientists-Scientist Spotlights (www.scientistspotlights.org).

View Article and Find Full Text PDF

Huntingtin (Htt) is a large protein of 3144 amino acids, whose function and regulation have not been well defined. Polyglutamine (polyQ) expansion in the N terminus of Htt causes the neurodegenerative disorder Huntington disease (HD). The cytotoxicity of mutant Htt is modulated by proteolytic cleavage with caspases and calpains generating N-terminal polyQ-containing fragments.

View Article and Find Full Text PDF

There is no satisfactory treatment for Huntington's disease (HD), a hereditary neurodegenerative disorder that produces chorea, dementia, and death. One potential treatment strategy involves the replacement of dead neurons by stimulating the proliferation of endogenous neuronal precursors (neurogenesis) and their migration into damaged regions of the brain. Because growth factors are neuroprotective in some settings and can also stimulate neurogenesis, we treated HD transgenic R6/2 mice from 8 weeks of age until death by s.

View Article and Find Full Text PDF

X-linked spinal and bulbar muscular atrophy (SBMA) is an inherited neuromuscular disorder characterized by lower motor neuron degeneration. SBMA is caused by polyglutamine repeat expansions in the androgen receptor (AR). To determine the basis of AR polyglutamine neurotoxicity, we introduced human AR yeast artificial chromosomes carrying either 20 or 100 CAGs into mouse embryonic stem cells.

View Article and Find Full Text PDF

X-linked spinal and bulbar muscular atrophy is a degenerative disease affecting motor neurons that is caused by polyglutamine (polyQ) expansion within the androgen receptor (AR). The polyQ-expanded form of AR is cytotoxic to cells, and proteolytic cleavage enhances cell death. The intracellular signaling pathways activated and/or required for cell death induced by the expanded form of AR (AR112) are unknown.

View Article and Find Full Text PDF